178 resultados para PIC 18F8722


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Late Pleistocene and Holocene sediment core from the nowadays terrestrialised portion of the Löddigsee in Southern Mecklenburg, Germany was palynologically investigated. The lake is situated in the rarely investigated Young moraine area at the transition from the Weichselian to the Saalian glaciation. The high-resolution pollen diagram contributes to the establishment of the north-eastern German Late Pleistocene pollen stratigraphy. The vegetation distribution pattern after the end of the Weichselian is in good agreement with other studies from North-eastern Germany, but also has its own characteristics. The Holocene vegetation development reveals features from the north-eastern and north-western German lowlands. A special focus was laid on the environmental history of the two settlements on an island within the lake (Late Neolithic and Younger Slavic period), which were preserved under moist conditions. Both settlements were constructed during a period of low lake level. Although there is evidence of agriculture in the area during the respective periods, the two island settlements seem to have served other purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This initial survey of pollen from 192 samples from Hole 794A, supplemented by 189 samples from Hole 795 and 797B, suggests that marine pollen assemblages from the southwestern Sea of Japan provide a consistent Neogene pollen stratigraphy and a solid basis for regional paleoenvironmental reconstructions. Late Miocene vegetation inferred from these pollen data, a mix of conifer and broad-leaf elements with now-extinct Tertiary types well represented, appears similar to Aniai-type floras of Japan. During the late Miocene through early Pliocene, as Tertiary types declined, conifers (including the Sequoia/Cryptomeria group) became more prominent than broad-leaf elements, and herbs played an increasing role in the vegetation. Middle Pliocene pollen assemblages imply significant changes in forest composition. In a 500,000-yr interval centered at ~4 m.y., Tertiary and warm-temperate deciduous types re-expanded and were comparable to or greater than middle-late Miocene levels. Temperate and cold-temperate conifers {Picea, Abies, Tsuga) were minimal. Subsequently, Tertiary and deciduous forest components (including Quercus) decreased, Picea, Tsuga, and Abies were again prominent, and herbs formed an increasingly larger part of the vegetation. Between ~3 m.y. and -2.5 m.y., conifers, except for Cryptomeria types, were prominent, Quercus continued to decline, and other broad-leaf trees were minor. Over the last 2 Ma, the very large and frequent changes in forest composition inferred from pollen in the Sea of Japan correspond to forest dynamics inferred from changes in pollen and floral assemblages throughout Japan. Given present vegetation/climate relationships, broad trends in Neogene climate inferred from these preliminary pollen data include decreasing temperatures, increasing seasonality in temperatures and precipitation, and increasing amplitude and frequency of climatic change. Two significant events, centered at ~9 m.y. and ~4 m.y., punctuate the gradual deterioration of the equable warm, humid subtropical/warm temperate late Miocene and early Pliocene climates. The first indication of cold-temperate conditions comparable to those of Pleistocene glacial intervals occurs ~3 m.y. Subsequently, regional climates oscillated rapidly between temperate and cold-temperate regimes that supported conifer and mixed broad-leaf forests; however, climatic extremes were apparently never great enough to displace warm-temperate and temperate forests from Honshu nor to produce arctic climates on the west coast of Japan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiological performance of two coccolithophore species,Emiliania huxleyi and Coccolithus braarudii, was investigated during long-term exposure to elevated pCO2 levels. Mono-specific cultures were grown over 152 (E. huxleyi) and 65 (C. braarudii) generations while pCO2 was gradually increased to maximum levels of 1150 ?atm (E. huxleyi) and 930 ?atm (C. braarudii) and kept constant thereafter. Rates of cell growth and cell quotas of particulate organic carbon (POC), particulate inorganic carbon (PIC) and total particulate nitrogen (TPN) were determined repeatedly throughout the incubation period. Increasing pCO2 caused a decrease in cell growth rate of 9% and 29% in E. huxleyi and C. braarudii, respectively. In both species cellular PIC:TPN and PIC:POC ratios decreased in response to rising pCO2, whereas no change was observed in the POC:TPN ratios of E. huxleyi and C. braarudii. These results are consistent with those obtained in shorter-term high CO2exposure experiments following abrupt pertubations of the seawater carbonate system and indicate that for the strains tested here a gradual CO2 increase does not alleviate CO2/pH sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 1180-cm long core recovered from Lake Lyadhej-To (68°15'N, 65°45'E, 150 m a.s.l.) at the NW rim of the Polar Urals Mountains reflects the Holocene environmental history from ca. 11,000 cal. yr BP. Pollen assemblages from the diamicton (ca. 11,000-10,700 cal. yr BP) are dominated by Pre-Quaternary spores and redeposited Pinaceae pollen, pointing to a high terrestrial input. Turbid and nutrient-poor conditions existed in the lake ca. 10,700-10,550 cal. yr BP. The chironomid-inferred reconstructions suggest that mean July temperature increased rapidly from 10.0 to 11.8 °C during this period. Sparse, treeless vegetation dominated on the disturbed and denuded soils in the catchment area. A distinct dominance of planktonic diatoms ca. 10,500-8800 cal. yr BP points to the lowest lake-ice coverage, the longest growing season and the highest bioproductivity during the lake history. Birch forest with some shrub alder grew around the lake reflecting the warmest climate conditions during the Holocene. Mean July temperature was likely 11-13 °C and annual precipitation-400-500 mm. The period ca. 8800-5500 cal. yr BP is characterized by a gradual deterioration of environmental conditions in the lake and lake catchment. The pollen- and chironomid-inferred temperatures reflect a warm period (ca. 6500-6000 cal. BP) with a mean July temperature at least 1-2 °C higher than today. Birch forests disappeared from the lake vicinity after 6000 cal. yr BP. The vegetation in the Lyadhej-To region became similar to the modern one. Shrub (Betula nana, Salix) and herb tundra have dominated the lake catchment since ca. 5500 cal. yr BP. All proxies suggest rather harsh environmental conditions. Diatom assemblages reflect relatively short growing seasons and a longer persistence of lake-ice ca. 5500-2500 cal. yr BP. Pollen-based climate reconstructions suggest significant cooling between ca. 5500 and 3500 cal. yr BP with a mean July temperature 8-10 °C and annual precipitation-300-400 mm. The bioproductivity in the lake remained low after 2500 cal. yr BP, but biogeochemical proxies reflect a higher terrestrial influx. Changes in the diatom content may indicate warmer water temperatures and a reduced ice cover on the lake. However, chironomid-based reconstructions reflect a period with minimal temperatures during the lake history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53' N, 36°29.55' E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18-14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1-14.5 kyr BP), indicated by d18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative d13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5-12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative d13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7-8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5-5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New pollen and radiocarbon data from an 8.6-m coastal section, Cape Shpindler (69°43' N; 62°48' E), Yugorski Peninsula, document the latest Pleistocene and Holocene environmental history of this low Arctic region. Twelve AMS 14C dates indicate that the deposits accumulated since about 13,000 until 2000 radiocarbon years BP. A thermokarst lake formed ca. 13,000-12,800 years BP, when scarce arctic tundra vegetation dominated the area. By 12,500 years BP, a shallow lake existed at the site, and Arctic tundra with Poaceae, Cyperaceae, Salix, Saxifraga, and Artemisia dominated nearby vegetation. Climate was colder than today. Betula nana became dominant during the Early Preboreal period about 9500 years BP, responding to a warm event, which was one of the warmest during the Holocene. Decline in B. nana and Salix after 9500 years BP reflects a brief event of Preboreal cooling. A subsequent increase in Betula and Alnus fruticosa pollen percentages reflects amelioration of environmental conditions at the end of Preboreal period (ca. 9300 years BP). A decline in arboreal taxa later, with a dramatic increase in herb taxa, reflects a short cold event at about 9200 years BP. The pollen data reflect a northward movement of tree birch, peaking at the middle Boreal period, around 8500 years BP. Open Betula forest existed on the Kara Sea coast of the Yugorski Peninsula during the Atlantic period (8000-4500 years BP), indicating that climate was significantly warmer than today. Deteriorating climate around the Atlantic-Subboreal boundary (ca. 4500 years BP) is recorded by a decline in Betula percentages. Sedimentation slowed at the site, and processes of denudation and/or soil formation started at the beginning of the Subatlantic period, when vegetation cover on Yugorski Peninsula shifted to near-modern assemblages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-series sediment traps were deployed for five consecutive years in two distinctively different subarctic marine environments. The centrally located subarctic pelagic Station SA (49°N, 174°W; water depth 5406 m) was simultaneously studied along with the marginal sea Station AB (53.5°N, 177°W; water depth 3788 m) in the Aleutian Basin of the Bering Sea. A mooring system was tethered to the sea-floor with a PARFLUX type trap with 13 sample bottles, which was placed at 600 m above the sea-floor at each of the two stations. Sampling intervals were synchronized at the stations, and they were generally set for 20 days during highly productive seasons, spring through fall, and 56 days during winter months of low productivity. Total mass fluxes, which consisted of mainly biogenic phases, were significantly greater at the marginal sea Station AB than at the pelagic Station SA for the first four years and moderately greater for the last year of the observations. This reflects the generally recognized higher productivity in the Bering Sea. Temporal excursion patterns of the mass fluxes at the two stations generally were in parallel, implying that temporal changes in their biological productivity are strongly governed by a large-scale seasonal climatic variability over the region rather than local phenomena. The primary reason for the difference in total mass flux at the two stations stems mainly from varying contributions of siliceous and calcareous planktonic assemblages. A significantly higher opal contribution at Station AB than at Station SA was mainly due to diatoms. Diatom fluxes at the marginal sea station were about twice those observed at the pelagic station, resulting in a very high opal contribution at Station AB. In contrast to the opal fluxes, CaCO3 fluxes at Station AB were slightly lower than at Station SA. The ratios of Corg/Cinorg were usually significantly greater than one in both regions, suggesting that preferentially greater organic carbon from cytoplasm than skeletal inorganic carbon was exported from the surface layers. Such a process, known as the biological pump, leads to a carbon sink which effectively lowers p CO2 in the surface layers and then allows a net flux of atmospheric CO2 into the surface layer. The efficiency of the biological pump is greater in the Bering Sea than at the open-ocean station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El'gygytgyn (NE Russia) provides a continuous high-resolution record from the Arctic spaning the past 2.8 Ma. The core reveals numerous "super interglacials" during the Quaternary, with maximum summer temperatures and annual precipitation during marine benthic isotope stages (MIS) 11c and 31 ~4-5 °C and ~300 mm higher than those of MIS 1 and 5e. Climate simulations show these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1967): In 1956-1962 investigations of swamps from the forest-steppe and steppe of Ukraine were carried out. They were followed by spore-pollen studies of swamp deposits. These materials are partially published in papers devoted to the history of vegetation in the south of Ukraine and re-vegetation of landscape in different phases of Holocene (Artyushenko, Bachurina, 1958; Artyushenko, 1959, 1960; Artyushenko, Kucheryava, 1964). Peat area in the investigated region is very small. In the forest-steppe peat occupies 1.1%, and in the steppe - 0.03% of the whole area (Peat Reserve of the Ukrainian SSR, 1959).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen analysis of Wisconsinan sediments from eleven localities in northern and central Illinois, combined with the results of older studies, allows a first general survey of the vegetational changes in Illinois during the last glaciation. In the late Altonian (after 40,000 B.P.), pine was already the most prevalent tree type in northern Illinois. Probably because of the influence of the last Altonian ice advance to northern Illinois, pine migrated to the south and reached south-central Illinois, which was at that time a region of prairie, with oak and hickory trees in favorable sites. Likewise in the late Altonian, spruce appeared in northern Illinois. Spruce also expanded its area to the south during the Wisconsinan, reaching south-central Illinois only after 21,000 B.P., in the early Woodfordian. Deciduous trees (predominantly oak) were present in south-central Illinois throughout the Wisconsinan. Their prevalence decreased to the north. The vegetation during the different subdivisions of the last glacial period in Illinois was approximately as follows: Late Altonian: Pine/spruce forest with some deciduous trees in northern and central Illinois; prairie and oak/hickory stands in south-central Illinois; immigration of pine. Farmdalian: Pine/spruce forest in central Illinois; deciduous trees and pine in south-central Illinois, with areas of open vegetation, perhaps similar to the present-day transition of prairie to forest in the northern Great Plains. Woodfordian: Northern and central Illinois ice covered; in south central Illinois, spruce and oak as dominant tree types, but also pine and grassland. During the Woodfordian, pine and spruce disappeared again from south-central Illinois, and oak/hickory forest and prairie again prevailed. The ice-free areas of northern Illinois become populated temporarily with spruce, but later there is proof of deciduous forest in this region. Pollen investigations in south-central Illinois have shown convincingly that deciduous trees could survive relatively close (less than 60 km) to the ice margin. Therefore the frequently presented view that arctic climatic conditions prevailed in North America during the last glaciation far south of the ice margin can be refuted for the Illinois area, confirming the opinion of other authors resulting from investigations of fossil mollusks and frost-soil features. The small number of localities investigated still permits no complete reconstruction of the vegetation zones and their possible movements in Illinois. During the Altonian and Farmdalian in Illinois, a vegetational zonation probably existed similar to that of today in North America. As the ice pushed southward as far as 39° 20' N. lat in the early Woodfordian, this zonation was apparently broken up under the influence of a relatively moderate climate. In any case, the Vandalia area, which was only about 60 km south of the ice, was at that time neither in a tundra zone nor in a zone of boreal coniferous forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Deep Convection cruise repeatedly sampled two locations in the North Atlantic, sited in the Iceland and Norwegian Basins, onboard the RV Meteor (19 March - 2 May 2012). Samples were collected from multiple casts of a conductivity-temperature-depth (CTD) - Niskin rosette at each station. Water samples for primary production rates, community structure, chlorophyll a [Chl a], calcite [PIC], particulate organic carbon [POC] and biogenic silicic acid [BSi] were collected from predawn casts from six light depths (55%, 20%, 14%, 7%, 5% and 1% of incident PAR). Additional samples for community structure and ancillary parameters were collected from a second cast. Carbon fixation rates were determined using the 13C stable isotope method. Water samples for diatom and micro zooplankton counts, collected from the predawn casts, were preserved with acidic Lugol's solution (2% final solution) and counted using an inverted light microscope. Water samples for coccolithophore counts were collected onto cellulose nitrate filters and counted using polarising light microscopy. Water samples for Chl a analysis were filtered onto MF300 and polycarbonate filters and extracted in 90% acetone. PIC and BSi samples were filtered onto polycarbonate filters and analysed using an inductively coupled plasma emission optical spectrometer and a SEAL QuAAtro autoanalyser respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coccolithophore Calcidiscus leptoporus was grown in batch culture under nitrogen (N) as well as phosphorus (P) limitation. Growth rate, particulate inorganic carbon (PIC), particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate organic phosphorus (POP) production were determined and coccolith morphology was analysed. While PON production decreased by 70% under N-limitation and POP production decreased by 65% under P-limitation, growth rate decreased by 33% under N- as well as P-limitation. POC as well as PIC production (calcification rate) increased by 27% relative to the control under P-limitation, and did not change under N-limitation. Coccolith morphology did not change in response to either P or N limitation. While these findings, supported by a literature survey, suggest that coccolith morphogenesis is not hampered by either P or N limitation, calcification rate might be. The latter conclusion is in apparent contradiction to our data. We discuss the reasons for this inference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new interglacial pollen sequence from the Döttinger dry maar in the Eifel region of the Rheinish Schield is presented. Palynology is used to correlated to several classical north German Holsteinian sites. The lake sediments reveal the complete interglacial and also 60 m of laminated sediments from the glacial preceding the Holsteinian. The interglacial section indicates limnic conditions in its lower part and telmatic conditions in its upper part with an intermediate episode of peat formation. Ash layers document internsive volcansim during the interglacial in the Eifel region. Some of the north German Holsteinian sites reval spikes of high abundance of Pinus, Beutal and Poaceae and/or setbacks of more demanding taxa during the interglacial, often interpreted as cold events. The Döttingen profile shows similar pattern, but with little response from the thermophilous pollen taxa. In the Döttingen sequence these vegetation 'anomalies' are preceded, or accompanied by phases of active volcanism. The role/interaction of climate and/or volcanism as a likely cause for these vegetation 'anomalies' ist still to be quantified.