421 resultados para Odontogenic Cysts
Resumo:
Surface sediments at 439 sites throughout the North Atlantic Ocean and adjacent seas have been analyzed for dinoflagellate cysts in order to establish a reference database from which paleoenvironmental transfer functions can be developed. Laboratory procedures and systematics were standardized in order to avoid bias introduced by the selective loss of taxa and to facilitate site to site comparison. 371 sites were retained to develop the database that includes 41 taxa, some of which were grouped using morphological and/or ecological criteria. 27 taxa were retained for statistical purposes. Distribution maps of these latter taxa have been plotted on the basis of their relative abundance. Principal component analyses were performed in order to describe the distribution of assemblages. The relation between the assemblages, as well as the relative abundance of individual taxa, and selected sea-surface parameters are illustrated. The parameters which were considered include temperature and salinity for winter (February) and summer (August) together with the duration of sea-ice cover. Transfer functions using the best analogue method have been tested with a view to reconstruct past sea-surface parameters. Validation procedures on this transfer function demonstrate that more than 95% of the reconstructions are included within the interannual variability of modern sea-surface conditions. Therefore, these transfer functions give accurate results and can be applied to reconstructing paleo-temperatures and -salinities from analogous assemblages in Quaternary sedimentary sequences. Protoperidinium stellatum (Wall in Wall & Dale, 1968) Head, comb. nov. (basionym = Peridinium stellatum) is proposed as new, and Algidasphaeridium? minutum var. cezare de Vernal et al., 1989 ex de Vernal et al. is newly validated.
Resumo:
Thirty-two surface sediment samples from the Southern Ocean (eastern Atlantic sector), between the Subtropical Front and the Weddell Gyre, were investigated to provide information on the distribution of modern organic-walled dinoflagellate cysts in relation to the oceanic fronts of the Antarctic Circumpolar Current (ACC). A clearly distinguishable distribution pattern was observed in relation to the water masses and fronts of the ACC. The dinoflagellate cysts of species characteristic of open oceanic environments, such as Impagidinium species, are highly abundant around the Subtropical Front, whereas south of this front, cosmopolitan species such as Nematosphaeropsis labyrinthus and the cysts of Protoceratium reticulatum characterise the transition from subtropical to subantarctic surface waters. The subantarctic surface waters are dominated by the cysts of heterotrophic dinoflagellates, such as Protoperidinium spp. and Selenopemphix antarctica. The cysts of Protoperidinium spp. form the dominant part of the assemblages around the Antarctic Polar Front, whereas S. antarctica concentrations increase further to the south. The presence of S. antarctica in sediments of the Maud Rise, a region of seasonal sea-ice cover, reflects its tolerance for low temperatures and sea-ice cover. A previously undescribed species, Cryodinium meridianum gen. nov. sp. nov., has a restricted distribution pattern between the Antarctic Polar Front and the ACC-Weddell Gyre Boundary.
Resumo:
Dinoflagellate cysts were analysed from IMAGES core MD952042 (37°48?N; 10°01?W) retrieved from the Tagus Abyssal Plain. Previous results of stable isotope and magnetic susceptibility measurements as well as of planktonic foraminiferal temperature reconstruction from this core, suggest the occurrence of "Heinrich-like events" (i.e. large ice-sheet decay) during Marine Isotopic Stage 5 (MIS 5). Dinoflagellate assemblages of this time period have revealed six dinocyst events that are characterised by peaks in Bitectatodinium tepikiense percentages. These events occur synchronously with "Heinrich-like events" previously identified. They are coeval with major retreats of the forest on land, indicating, therefore, drastic changes in the regional climate. However, results from the Ice-Rafted Detritus (IRD) analysis of the >150 ?m lithic fraction shows that MIS 5 of MD952042 has only recorded one significant input of iceberg discharge, located at the MIS 6/MIS 5 transition. It seems therefore that it is the only event that could be called a "true Heinrich event".
Resumo:
In order to examine the spatial distribution of organic-walled dinoflagellate cysts (dinocysts) in recent sediments related to environmental conditions in the water column, thirty-two surface sediment samples from the NW African upwelling region (20-32°N) were investigated. Relative abundances of the dinocyst species show distinct regional differences allowing the separation of four hydrographic regimes. (1) In the area off Cape Ghir, which is characterized by most seasonal upwelling and river discharge, Lingulodinium machaerophorum strongly dominates the associations which are additionally characterized by cysts of Gymnodinium nolleri, cysts of Polykrikos kofoidii and cysts of Polykrikos schwartzii. (2) Off Cape Yubi, a region with increasing perennial upwelling, L. machaerophorum, Brigantedinium spp., species of the genus Impagidinium and cysts of Protoperidinium stellatum occur in highest relative abundances. (3) In coastal samples between Cape Ghir and Cape Yubi, Gymnodinium catenatum, species of the genus Impagidinium, Nematosphaeropsis labyrinthus, Operculodinium centrocarpum, cysts of P. stellatum and Selenopemphix nephroides determine the species composition. (4) Off Cape Blanc, where upwelling prevails perennially, and at offshore sites, heterotrophic dinocyst species show highest relative abundances. A Redundancy Analysis reveals fluvial mud, sea surface temperature and the depth of the mixed layer in boreal spring (spring) as the most important parameters relating to the dinocyst species association. Dinocyst accumulation rates were calculated for a subset of samples using well-constrained sedimentation rates. Highest accumulation rates with up to almost 80.000 cysts cm**-2 ky**-1 were found off Cape Ghir and Cape Yubi reflecting their eutrophic upwelling filaments. A Redundancy Analysis gives evidence that primary productivity and the input of fluvial mud are mostly related to the dinocyst association. By means of accumulation rate data, quantitative cyst production of individual species can be considered independently from the rest of the association, allowing autecological interpretations. We show that a combined interpretation of relative abundances and accumulation rates of dinocysts can lead to a better understanding of the productivity conditions off NW Africa.
Resumo:
Here, we reconstruct the varying influence of the Agulhas Current (AgC), the South Atlantic Current and the Antarctic Circumpolar Current on the Agulhas Retroflection (AgR) in the eastern South Atlantic Ocean for the last 160,000 years on the basis of the dinoflagellate cysts, pollen and spores present in a sediment core (GeoB 3603-2) from the southeastern Cape Basin offshore South Africa, where the Agulhas Current enters the Atlantic Ocean. Our analyses reveal strong orbital forcing on the heat exchange between the Indian Ocean and the South Atlantic Ocean during the Late Quaternary. Maxima in local productivity appear to be primarily related to a strengthening of the ocean circulation as a result of the high seasonal contrast during precession maxima. During precession minima, seasonal contrast was low and stratified, oligo- to mesotrophic conditions prevailed, notably when these minima coincided with the glacial terminations. The clear presence of periodicities on a sub-Milankovitch scale as well as modulations of the primary frequencies demonstrate that the Agulhas Retroflection furthermore is modulated substantially by complex interactions between the subtropical, 'precession-driven', climate and ocean circulation systems, and the southern, 'obliquity-driven', high latitudes.
Resumo:
In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100 m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.
Resumo:
Delta18O and delta13C values for the calcareous dinoflagellate species Orthopithonella? globosa (Fütterer 1984) Lentin and Williams 1985 and Pirumella krasheninnikovii (Bolli 1974) Lentin and Williams 1993 from lates Campanian and earliest Maastrichtian of ODP Hole 690C (Weddell Sea, Antarctic Ocean) have been studied in order to evaluate the species' depth habitat in the water column and their applicability in paleoceanographic studies. The calcareous dinoflagellates show isotopic values comparable to probably shallow-dwelling planktic foraminifera from the same sample in delta18O, but have an offset of about -5 ? to -7? in delta13C. This suggests that calcareous dinoflagellate oxygen isotopes may provide information for paleoceanographic reconstructions of sea-surface water temperatures, whereas their extremely light carbon isotope values are probably due to photosynthetic processes.
Resumo:
A palaeoceanographic reconstruction of the Late Quaternary tropical Atlantic Ocean has been made on the basis of dinoflagellate cyst associations of two sediment cores: the first core was recovered from below the highly productive waters of the equatorial divergence and the second from the oligotrophic western tropical Atlantic Ocean. Palaeoenvironmental indicators for productivity, sea surface temperature (SST) and salinity (SSS) based on selected organic-walled dinoflagellate cyst species have been established. On the basis of these palaeoenvironmental indicators, a strengthened intensity of the equatorial divergence in the eastern region during glacials and cold periods of interglacials has been reconstructed. The highest SST probably occurred around substage 5.5 and might refer to weakest upwelling intensity. In comparison, SST and SSS appear to have been generally higher in the western tropical Atlantic Ocean, with probably enhanced values during glacial intervals. Pronounced differences in accumulation rates and relative abundances of cysts formed by congruentidiacean dinoflagellates and relative abundances of oligotrophic cyst species between the eastern and the western region can be related to differences in palaeoproductivity, suggesting much higher values in the eastern area. The coherence between variation in frequency of the indicators for productivity and the boreal summer insolation and monsoon intensity in the eastern tropical Atlantic Ocean suggests an oceanographic reflection of regional intertropical, rather than boreal, dynamics.
Resumo:
The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a ~260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 (~2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.
Resumo:
The mid-Pliocene was an episode of prolonged global warmth and strong North Atlantic thermohaline circulation, interrupted briefly at circa 3.30 Ma by a global cooling event corresponding to marine isotope stage (MIS) M2. Paleoceanographic changes in the eastern North Atlantic have been reconstructed between circa 3.35 and 3.24 Ma at Deep Sea Drilling Project Site 610 and Integrated Ocean Drilling Program Site 1308. Mg/Ca ratios and d18O from Globigerina bulloides are used to reconstruct the temperature and relative salinity of surface waters, and dinoflagellate cyst assemblages are used to assess variability in the North Atlantic Current (NAC). Our sea surface temperature data indicate warm waters at both sites before and after MIS M2 but a cooling of ~2-3°C during MIS M2. A dinoflagellate cyst assemblage overturn marked by a decline in Operculodinium centrocarpum reflects a southward shift or slowdown of the NAC between circa 3.330 and 3.283 Ma, reducing northward heat transport 23-35 ka before the global ice volume maximum of MIS M2. This will have established conditions that ultimately allowed the Greenland ice sheet to expand, leading to the global cooling event at MIS M2. Comparison with an ice-rafted debris record excludes fresh water input via icebergs in the northeast Atlantic as a cause of NAC decline. The mechanism causing the temporary disruption of the NAC may be related to a brief reopening of the Panamanian Gateway at about this time.