236 resultados para OKINAWA TROUGH
Resumo:
CTD and nephelometric sounding data are considered along with parameters of the near-bottom currents and particulate fluxes measured by a subsurface mooring station in the northern part of the Bear Island Trough. It is shown that the near-bottom current is characterized by highly variable parameters, while distribution of suspended particulate matter demonstrates surface and bottom maxima. Horizontal and vertical fluxes of sedimentary material in the nepheloid layer are studied.
Resumo:
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.
Resumo:
Surface samples and nine cores from the western Baltic Sea and marginal water bodies were investigated for clay mineral composition. The clay mineral assemblages of recent sediments are rather homogeneous. Variations result mainly from the erosion of different glacial source deposits. High percentages of illite and low kaolinite/chlorite and quartz/feldspar ratios are characteristic for this glacial source. Advection of kaolinite-rich suspensions from the North Sea is believed to account for higher kaolinite/chlorite ratios in the Mecklenburg Bight. A contribution of the rivers Trave and Oder to the western Baltic Sea is indicated by increased smectite values in marginal water bodies. They correspond to increased kaolinite/chlorite and quartz/feldspar ratios. In the main basins the river signal is diluted beyond recognition. Cores from the Arkona, Bornholm and Gotland Basins penetrate through post-Littorina muds and sediments of the Ancylus Lake/Yoldia Sea into Late Glacial sediments of the Baltic Ice Lake. Clay mineral assemblages are characterized by an increase in kaolinite/chlorite ratios from Late Glacial to Holocene sediments, with a distinct shift at each facies change. This allows the distinction and core to core correlation of main lithological units with kaolinite/chlorite ratios. Kaolinite enrichment of Holocene muds corresponds to a brackish-marine facies and may reflect influx of kaolinite-rich suspensions from the North Sea. Cores from the lagoon of the Oderhaff show fluctuations in the contributions of the two main sediment sources: river suspension and glacial deposits during the Late Glacial and Postglacial sequence. Lacustrine sediments, which were deposited prior to 5500 years B.P. are characterized by smectite, kaolinite and quartz from the drainage area of the Oder river. Erosion of coastal and offshore glacial boulder clays with the Littorina transgression supplied a marine component rich in illite, chlorite and feldspars to the brackish muds of the Oderhaff.