191 resultados para Mytilus edulis.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval stages are among those most vulnerable to ocean acidification (OA). Projected atmospheric CO2 levels for the end of this century may lead to negative impacts on communities dominated by calcifying taxa with planktonic life stages. We exposed Mediterranean mussel (Mytilus galloprovincialis) sperm and early life stages to pHT levels of 8.0 (current pH) and 7.6 (2100 level) by manipulating pCO2 level (380 and 1000 ppm). Sperm activity was examined at ambient temperatures (16-17 °C) using individual males as replicates. We also assessed the effects of temperature (ambient and = 20 °C) and pH on larval size, survival, respiration and calcification of late trochophore/early D-veliger stages using a cross-factorial design. Increased pCO2 had a negative effect on the percentage of motile sperm (mean response ratio R= 71%) and sperm swimming speed (R= 74%), possibly indicating reduced fertilization capacity of sperm in low concentrations. Increased temperature had a more prominent effect on larval stages than pCO2, reducing performance (RSize = 90% and RSurvival = 70%) and increasing energy demand (RRespiration = 429%). We observed no significant interactions between pCO2 and temperature. Our results suggest that increasing temperature might have a larger impact on very early larval stages of M. galloprovincialis than OA at levels predicted for the end of the century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the impact of ocean acidification and warming on communities and ecosystems is a researcher priority. This can only be achieved through a combination of experimental and field approaches that would allow developing a mechanistic understanding of impacts across level of biological organizations. Surprisingly, most published studies are still focusing on single species responses with little consideration for interspecific interactions. In this study, the impacts of a 3 days exposure to three parameters (temperature, pH, and presence/absence of the predator cue of the crab Charybdis japonica) and their interactions on an ecologically important endpoint were evaluated: the byssus production of the mussel Mytilus coruscus. Tested temperatures (25°C and 30°C) were within the present range of natural variability whereas pH (8.1, 7.7, and 7.4) covered present as well as near-future natural variability. As expected, the presence of the crab cue induced an antipredator response in Mytilus coruscus (significant 10% increase in byssus secretion rate, 22% increase in frequency of shed byssus, and 30% longer byssus). Decreased pH but not temperature had a significant negative impact on the same endpoints (up to a 17% decrease in byssus secretion rate, 40% decrease in frequency of shed byssus, and 10% shorter byssus at pH 7.3 as compared with pH 8.1) with no significant interactions between the three tested parameters. In this study, it has been hypothesized that pH and predator cue have different modes of action and lead to conflicting functional responses (escape response versus stronger attachment). Functional consequences for ecosystem dynamics still need to be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the impact of medium-term exposure to elevated pCO2 levels (750-1200 ppm) on the physiological processes of juvenile Mytilus chilensis mussels over a period of 70 d in a mesocosm system. Three equilibration tanks filled with filtered seawater were adjusted to three pCO2 levels: 380 (control), 750 and 1200 ppm by bubbling air or an air-CO2 mixture through the water. For the control, atmospheric air (with aprox. 380 ppm CO2) was bubbled into the tank; for the 750 and 1200 ppm treatments, dry air and pure CO2 were blended to each target concentration using mass flow controllers for air and CO2. No impact on feeding activity was observed at the beginning of the experiment, but a significant reduction in clearance rate was observed after 35 d of exposure to highly acidified seawater. Absorption rate and absorption efficiency were reduced at high pCO2 levels. In addition, oxygen uptake fell significantly under these conditions, indicating a metabolic depression. These physiological responses of the mussels resulted in a significant reduction of energy available for growth (scope for growth) with important consequences for the aquaculture of this species during medium-term exposure to acid conditions. The results of this study clearly indicate that high pCO2 levels in the seawater have a negative effect on the health of M. chilensis. Therefore, the predicted acidification of seawater associated with global climate change could be harmful to this ecologically and commercially important mussel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbonate chemistry of seawater from the Ria Formosa lagoon was experimentally manipulated, by diffusing pure CO2, to attain two reduced pH levels, by -0.3 and -0.6 pH units, relative to unmanipulated seawater. After 84 days of exposure, no differences were detected in terms of growth (somatic or shell) or mortality of juvenile mussels Mytilus galloprovincialis. The naturally elevated total alkalinity of the seawater (= 3550 µmol/kg) prevented under-saturation of CaCO3, even under pCO2 values exceeding 4000 µatm, attenuating the detrimental effects on the carbonate supply-side. Even so, variations in shell weight showed that net calcification was reduced under elevated CO2 and reduced pH, although the magnitude and significance of this effect varied among size-classes. Most of the loss of shell material probably occurred as post-deposition dissolution in the internal aragonitic nacre layer. Our results show that, even when reared under extreme levels of CO2-induced acidification, juvenile M. galloprovincialis can continue to calcify and grow in this coastal lagoon environment. The complex responses of bivalves to ocean acidification suggest a large degree of interspecific and intraspecific variability in their sensitivity to this type of perturbation. Further research is needed to assess the generality of these patterns and to disentangle the relative contributions of acclimation to local variations in seawater chemistry and genetic adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg/L, 6 mg/L). Clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), ammonium excretion rate (ER), O:N ratio and scope for growth (SFG) were significantly reduced, and faecal organic dry weight ratio (E) was significantly increased at low DO. Low pH did not lead to a reduced SFG. Interactive effects of pH and DO were observed for CR, E and RR. Principal component analysis (PCA) revealed positive relationships among most physiological indicators, especially between SFG and CR under normal DO conditions. These results demonstrate that Mytilus coruscus was sensitive to short-term (72 h) exposure to decreased O2 especially if combined with decreased pH levels. In conclusion, the short-term oxygen and pH variation significantly induced physiological changes of mussels with some interactive effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3) * two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal ocean acidification is expected to interfere with the physiology of marine bivalves. In this work, the effects of acidification on the physiology of juvenile mussels Mytilus galloprovincialis were tested by means of controlled CO2 perturbation experiments. The carbonate chemistry of natural (control) seawater was manipulated by injecting CO2 to attain 2 reduced pH levels: -0.3 and -0.6 pH units as compared with the control seawater. After 78 d of exposure, we found that the absorption efficiency and ammonium excretion rate of juveniles were inversely related to pH. Significant differences among treatments were not observed in clearance, ingestion and respiration rates. Coherently, the maximal scope for growth and tissue dry weight were observed in mussels exposed to the pH reduction delta pH=-0.6, suggesting that M. galloprovincialis could be tolerant to CO2 acidification, at least in the highly alkaline coastal waters of Ria Formosa (SW Portugal).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of future scenarios of progressive accumulation of anthropogenic CO2 in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean bivalve, Mytilus galloprovincialis. Sea-water pH was lowered to a value of 7.3 by equilibration with elevated CO2 levels. This is close to the maximum pH drop expected in marine surface waters during atmosextracellular pHric CO2 accumulation. Intra- and extracellular acid-base parameters as well as changes in metabolic rate and growth were studied under both normocapnia and hypercapnia. Long-term hypercapnia caused a permanent reduction in haemolymph pH. To limit the degree of acidosis, mussels increased haemolymph bicarbonate levels, which are derived mainly from the dissolution of shell CaCO3. Intracellular pH in various tissues was at least partly compensated; no deviation from control values occurred during long-term measurements in whole soft-body tissues. The rate of oxygen consumption fell significantly, indicating a lower metabolic rate. In line with previous reports, a close correlation became evident between the reduction in extracellular pH and the reduction in metabolic rate of mussels during hypercapnia. Analysis of frequency histograms of growth rate revealed that hypercapnia caused a slowing of growth, possibly related to the reduction in metabolic rate and the dissolution of shell CaCO3 as a result of extracellular acidosis. In addition, increased nitrogen excretion by hypercapnic mussels indicates the net degradation of protein, thereby contributing to growth reduction. The results obtained in the present study strongly indicate that a reduction in sea-water pH to 7.3 may be fatal for the mussels. They also confirm previous observations that a reduction in sea-water pH below 7.5 is harmful for shelled molluscs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.