611 resultados para LASER data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DTRF2008 is a realization of the International Terrestrial Reference System ITRS. The DTRF2008 consists of station positions and velocities of global distributed observing stations of the space geodetic observation techniques VLBI, SLR, GPS and DORIS. The DTRF2008 was released in May 2010 and includes the observation data of the techniques up to and including 2008. The observation data are processed and submitted by the corresponding international services: IGS (International GNSS Service, http://igscb.jpl.nasa.gov) IVS (International VLBI Service, http://ivscc.gsfc.nasa.gov) ILRS (International Laser Ranging Service, http://ilrs.gsfc.nasa.gov) IDS (International DORIS Service, http://ids-doris.org). The DTRF2008 is an independent ITRS realization, which is computed on the basis of the same input data as the ITRF2008 (IGN, Paris). Both realizations differ with respect to their computation strategies: while the ITRF2008 is based on the combination of solutions, the DTRF2008 is computed by the combination of normal equations. The DTRF2008 comprises the coordinates of 559 GPS-, 106 VLBI-, 122 SLR- and 132 DORIS-stations. The reference epoch is 1.1.2005, 0h UTC. The Earth Orientation Parameters (EOP) - that means the coordinates of the terrestrial and the celestial pole, UT1-UTC and the Length of Day (LOD) - were simultaneously estimated with the station coordinates. The EOP time series cover the period of 1983 to 2008. The station names are the official IERS indications: cdp numbers or 4-character IDs and DOMES numbers (http://itrf.ensg.ign.fr/doc_ITRF/iers_sta_list.txt). The solution is available in different file formats (SINEX and SSC), see below. A detailed description of the solution is given by Seitz M. et al. (2012). The results of a comparison of DTRF2008 and ITRF2008 is given by Seitz M. et al. (2013). More information as well as residual time series of the station positions can be made available by request.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an SiF4 separation line, coupled to a laser fluorination system, which allows for an efficient combined silica d18O and d30Si analysis (50 min per sample). The required sample weight of 1.5-2.0 mg allows for high-resolution isotope studies on biogenic opal. Besides analytical tests, the new instrumentation set-up was used to analyse two marine diatom fractions (>63 µm, 10-20 µm) with different diatom species compositions extracted from a Bølling/Allerød-Holocene core section [MD01-2416, North-West (NW) Pacific] to evaluate the palaeoceanographic significance of the diatom isotopic signals and to address isotopic effects related to contamination and species-related isotope effects (vital and environmental effects). While d30Si offsets between the two fractions were not discernible, supporting the absence of species-related silicon isotope effects, systematic offsets occur between the d18O records. Although small, these offsets point to species-related isotope effects, as bias by contamination can be discarded. The new records strengthen the palaeoceanographic history during the last deglaciation in the NW Pacific characterized by a sequence of events with varying surface water structure and biological productivity. With such palaeoceanographic evolution it becomes unlikely that the observed systematic d18O offsets signal seasonal temperature variability. This calls for reconsideration of vital effects, generally excluded to affect d18O measurements.