558 resultados para Isotopic oxygen
Resumo:
The transition from the late Oligocene warm period into the early Miocene was marked by a series of rapid and brief episodes of cryospheric expansion and global cooling. We analyzed benthic foraminifers from nannofossil oozes recovered at Ocean Drilling Program Site 1218 to construct a stable isotope stratigraphy for the deep Pacific.
Resumo:
Data on the composition of benthic foraminiferal faunas at Deep Sea Drilling Project Site 575 in the eastern equatorial Pacific Ocean were combined with benthic and planktonic carbon- and oxygen-isotope records and CaCO3 data. Changes in the composition of the benthic foraminiferal faunas at Site 575 predated the middle Miocene period of growth of the Antarctic ice cap and cooling of the deep ocean waters by about 2 m.y., and thus were not caused by this cooling (as has been proposed). The benthic faunal changes may have been caused by increased variability in corrosivity of the bottom waters, possibly resulting from enhanced productivity in the surface waters.
Resumo:
Massive discharges of freshwater from the glacial lake Missoula to the northeast Pacific Ocean are thought to have sculpted the Channeled Scablands of eastern Washington and debouched via the Columbia River near 46°N. The dynamics and timing of these events and their impact on northeast Pacific circulation remain uncertain. Here we date marine records of anomalous freshwater inputs to the ocean based on freshwater diatoms, oxygen isotopes in foraminifera, and radiocarbon data. Low-salinity plumes from the Columbia River reduced sea-surface salinities by as much as 6 psu (practical salinity units) more than 400 km away between 16 and 31 cal (calendar) ka B.P. Anomalously high abundances of freshwater diatoms in marine sediments from the region precede generally accepted dates for the existence of glacial Lake Missoula, implying that large flooding or freshwater routing events were common during the advance of the Cordilleran Ice Sheet and that such events require multiple sources.
Resumo:
Stable isotopic and micropaleontological studies were made of selected sapropels (organic-rich sediments) deposited in the Mediterranean Sea during the last 5.0 m.y. to determine the processes responsible for their formation. Distinct isotopic and faunal changes occur across sapropels of late Pleistocene, early Pleistocene and latest Pliocene age, while smaller isotopic changes and more stable faunal assemblages are associated with the early and mid-late Pliocene sapropels. The large d18O depletions and euryhaline fauna associated with latest Pliocene-Pleistocene sapropels supports a density stratification model with a low salinity surface layer. In contrast, early Pliocene and mid-late Pliocene sapropels appear to have been formed as the result of sluggish circulation and low oxygen contents in bottom waters of the eastern Mediterranean due to the stable, warm climatic conditions of that time period.