188 resultados para Interactive Java Applets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotopic analyses of bulk carbonates recovered from Ontong Java Plateau during Ocean Drilling Program (ODP) Leg 192 (Holes 1183A and 1186A) show an ~0.5 per mil increase in d18O values from the upper Campanian/lower Maastrichtian to the upper Maastrichtian. This shift is consistent with widespread evidence for cooling at this time. Similar shifts were found at other localities on Ontong Java Plateau (Deep Sea Drilling Project [DSDP] Sites 288 and 289 and ODP Site 807) and at DSDP Site 317 on Manihiki Plateau. These data extend evidence for Maastrichtian cooling into the southwestern tropical and subtropical Pacific. The record of apparent cooling survives despite a significant diagenetic overprint at all sites. Comparing average Maastrichtian d18O values among sites suggests that diagenesis caused d18O to first be shifted toward higher values and then back toward lower values as burial depth increased. Carbon isotopes at the six sites show no apparent primary shifts, but at four sites, the Cretaceous/Tertiary boundary interval coincides with a negative excursion attributed to alteration of sediments near the boundary.