377 resultados para Innershelf sediments
Resumo:
Investigation of the ferromagnetic fraction of sediments from the Brazil Basin and Rio Grande Rise shows that its main constituents are magnetite and hematite. The magnetite is detrital, but the hematite is both detrital and chemical in origin. Magnetite is the main carrier of the natural remanent magnetization (NRM); therefore, the NRM is detrital remanent magnetization (DRM). In a number of cases, the change of magnetic parameters along the stratigraphic column permits some refinement of the previously defined boundaries of the lithologic units.
Resumo:
Contents of labile (acid-soluble) sulfides were determined in the upper layer of bottom sediments at 80 stations on the Caucasian shelf of the Black Sea. Maximum values of this parameter occurred in black mud accumulated in zones of intense pollution in the Gelendzhik and Tsemess bays and in shelf areas adjacent to large health resort objects and to seaports. Contents of acid-soluble sulfides in sediments varied from 400 to 900 mg S/dm**3 of wet mud. In zones of moderate pollution they varied from 200 to 400 mg S/dm**3. Rate of sulfate reduction was 10-40 mg S/dm**3 of wet sediment per day. Obtained data show that accumulation of labile sulfides in the upper layer of shelf bottom sediments is directly related to anthropogenic pollution and is one of the most hazardous environmental aftereffects.
Resumo:
Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.
Resumo:
Two shelf communities from the central part off the California Peninsula are described. The community of Amphiodia urtica - Nephtys ferruginea develops in the central part of the shelf within the depth range 95-105 m. The community of Nephtys ferruginea - Amphiura acrystata develops on the shelf edge at depth 110 m. Biomasses of both communities are very low (about 10 g/m**2). Species richness of the shelf community is high; more than 60 species occur in samples (43-51 species per a community). Various echinoderms and some other groups are abundant on the Californian shelf; these groups are absent in shelf areas of Peruvian and Benguela upwellings. Species structures of the communities were analyzed; the communities were shown to consist of coexisting, but not interacting guilds; this indicates that the communities are undersaturated with individuals. At the same time values of ABC-indices indicate that the communities are stable. We suggest that in this case adaptation to unfavorable but stable environment is observed (selection of species-stressolarents). An explanation seems to lie in the penetrating type of the upwelling in the Californian upwelling zone. Low biomass values seem to result from mass development of necto-benthic carnivorous crustaceans-galateids Pleuroncodes planiceps.
Resumo:
The late Paleocene thermal maximum (LPTM) was a dramatic, short-term global warming event that occurred ~55 Ma. Warming of high-latitude surface waters and global deep waters during the LPTM has been well documented; however, current data suggest that subtropical and tropical sea surface temperatures (SSTs) did not change during the event. Conventional paradigms of global climate change, such as CO2-induced greenhouse warming, predict greater warming in the high latitudes than in the tropics or subtropics but, nonetheless, cannot account for the stable tropical/subtropical SSTs. We measured the stable isotope values of well-preserved late Paleocene to early Eocene planktonic foraminifera from South Atlantic Deep Sea Drilling Project (DSDP) Site 527 to evaluate the subtropical response to the climatic and environmental changes of the LPTM. Planktonic foraminiferal d18O values at Site 527 decrease by ~0.94 per mil from pre-LPTM to excursion values, providing the first evidence for subtropical warming during the LPTM. We estimate that subtropical South Atlantic SSTs warmed by at least ~1°-4°C, on the basis of possible changes in evaporation and precipitation. The new evidence for subtropical SST warming supports a greenhouse mechanism for global warming involving elevated atmospheric CO2 levels.
Resumo:
Data on concentrations of the major ions (Cl, SO4, Alk, Na, K, Ca, Mg, NH4) in interstitial waters from sediments of three brine-bearing deeps of the Red Sea rift zone are reported. Interstitial waters of the Atlantis-II Deep have the highest salinity (310.1 g/l), of the Discovery Deep - slightly lower (298.8 g/l), and of the Suakin Deep - the lowest (159.9 g/l). Interstitial waters of all three deeps are characterized by low, compared with sea water, absolute and relative concentrations of Mg and SO4 ions and have extremely low alkaline reserve (0.15-0.64 meq/l). Concentrations of K, Ca and especially Na and Cl ions, as compared with sea water, are highly increased. Interstitial waters from the deeps in study have high, compared with sea water, concentrations of NH4 (12-62 mg/l).
Resumo:
Planktonic foraminiferal oxygen isotope records from the western and eastern tropical Pacific and Atlantic Oceans suggest a southward shift in the Intertropical Convergence Zone toward its modern location between 4.4 and 4.3 Ma. A concomitant shift in the carbon isotope compositions of Atlantic benthic foraminifera provides strong evidence for an increased thermohaline overturn at this time. We suggest that the southward shift of the Intertropical Convergence Zone and associated change in trade-wind circulation altered equatorial surface hydrography, increased the advection of warmer and more saline surface waters into the subtropical and North Atlantic, and contributed to thermohaline overturn.
Resumo:
Marked variations in the chemical and mineralogical composition of sediments at Site 319 have occurred during the 15 My history of sedimentation at this site. The change in composition through time parallels the variability observed in surface sediments from various parts of the Nazca Plate and can be related to variations in the proportion of hydrothermal, hydrogenous, detrital and biogenous phases reaching this site at different times. Metal accumulation rates at Site 319 reach a maximum near the basement for most elements, suggesting a strong hydrothermal contribution during the early history of this site. The hydrothermal contribution decreased rapidly as Site 319 moved away from the spreading center, although a subtle increase in this source is detectable about the time spreading began on the East Pacific Rise. The most recent sedimentation exhibits a strong detritalhydrogenous influence. Post-depositional diagenesis of amorphous phases has converted them to ironrich smectite and well-crystallized goethite without significantly altering the bulk composition of the sediment.
Resumo:
Two radiolarian assemblages are distinguished: an equatorial sub-assemblage of the tropical assemblage in the East Pacific Ocean, which differs somewhat from association of radiolarians in the western part of the ocean, and an assemblage close to transitional one between the tropical and the boreal. The latter is characterized by presence of considerable number of species typical for cold-water regions. Some criteria are presented for distinguishing radiolarian associations in nearshore regions from similar associations in regions of the open ocean.
Resumo:
Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.
Resumo:
High resolution pore-water dissolved Ba concentration-depth profiles were determined at seven sites across an Equatorial Pacific productivity gradient from 12°S to 9°N, at 140°W. These data are important for understanding the physical, chemical, and biological controls on Ba recycling in the ocean, and for evaluating the paleo-oceanographic significance of Ba content in central Equatorial Pacific sediments. Pore-water Ba concentrations at all sites are higher than in the overlying bottom water, leading to a diffusive flux of Ba into the ocean. A pronounced subsurface concentration maximum exceeding barite solubility characterizes the dissolved Ba pore-water profiles, suggesting that the Ba regenerated in the upper few millimeters of sediment is not controlled by barite solubility. A few centimeters down-core Ba concentrations reach a relatively constant value of approximately barite saturation. The benthic Ba flux shows a clear zonal trend, with a maximum between 2°S and 2°N, most probably due to higher productivity at the equatorial divergence zone, and with lowest values at the southern and northern extremes of the transect. The dissolved Ba flux between 2°S and 2°N is ~30 nmol/cm**2 yr and drops to 6 nmol/cm**2 yr at 12°S. Even the lowest fluxes are significantly higher than those previously reported for the open ocean. In the Equatorial Pacific the calculated Ba recycling efficiency is about 70%. Thus, ~30% of the particulate Ba flux to the deep ocean is preserved in the sediments, compared with less than 1% for organic carbon and ~5% for biogenic silica. Mass balance calculation of the oceanic Ba cycle, using a two-box model, implies benthic Ba fluxes similar to those reported here for a steady-state ocean.