258 resultados para ISOTOPIC EVIDENCE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant variations in the isotopic composition of marine calcium have occurred over the last 80 million years. These variations reflect deviations in the balance between inputs of calcium to the ocean from weathering and outputs due to carbonate sedimentation, processes that are important in controlling the concentration of carbon dioxide in the atmosphere and, hence, global climate. The calcium isotopic ratio of paleo-seawater is an indicator of past changes in atmospheric carbon dioxide when coupled with determinations of paleo-pH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxygen isotope analyses of Tertiary and Cretaceous planktic foraminifera indicate that species have been stratified with respect to depth in the water column at least since Albian time. There is a relationship between morphology and depth habitat. Species with globigerine morphology have consistently occupied shallower depths than have species with globorotalid morphology. Biserially arranged species occupied both shallow and deep levels in the water column. On the average, it appears that ancient species with shallow habitats have been more susceptible to dissolution and have been preserved less well than species dwelling in deeper habitats. This relationship is similar to that observed for Recent planktic foraminifera. Comparison of carbon isotope ratios of adult and juvenile forms indicates that either the source of the carbon found in the shell or the carbon isotopic fractionations which occur during calcite secretion change during the development of individual foraminifera. The carbon isotopic ratios do not provide a reliable means for reconstructing the depth habitats of ancient species. Temperature-depth profiles for tropical Tertiary oceans have been reconstructed from the isotopic temperatures of planktic and benthic foraminifera. The vertical thermal structure of Oligocene oceans resembled that of modern oceans most closely. Those of Paleocene and Maastrichtian times differed most from that of modern oceans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic foraminiferal and calcareous nannofossil assemblages, as well as stable isotope data from the Campanian/Maastrichtian boundary interval (~71.4 to ~70.7 Ma) of the Kronsmoor section (North German Basin), were investigated in order to characterize changes in surface-water productivity and oxygen content at the seafloor and their link to climatic and paleoceanographic changes. A nutrient index based on calcareous nannofossils is derived for the high-latitude, epicontinental North German Basin, reflecting changes in surface-water productivity. Oxygen isotopes of well-preserved planktic foraminiferal specimens of Heterohelix globulosa reflect warmer surface-water temperatures in the lower part of the studied succession and a cooling of up to 2°C (0.5 per mil) in the upper part (after 71.1 Ma). For the lower and warmer part of the investigated succession, benthic foraminiferal assemblages and the calcareous nannofossils indicate well-oxygenated bottom waters and low-surface water productivity. In contrast, the upper part of the succession is characterized by cooler conditions, lower oxygen content at the seafloor and increasing surface-water productivity. It is proposed that the cooling phase starting at 71.1 Ma was accompanied by increasing surface-water mixing caused by westerly winds. As a consequence of mixing, nutrients were advected from sub-surface waters into the mixed layer, resulting in increased surface-water productivity and enhanced organic matter flux to the seafloor. We hypothesize that global sea-level fall during the earliest Maastrichtian (~71.3 Ma), indicated by decreasing carbon isotope values, may have led to a weaker water mass exchange through narrower gateways between the Boreal Realm and the open North Atlantic and Tethys oceans. Both the weaker water mass exchange and enhanced surface-water productivity may have led to slightly less ventilated bottom waters of the upper part of the studied section. Our micro-paleontological and stable isotopic approach indicates short-term (<100 kyr) changes in oxygen consumption at the seafloor and surface-water productivity across the homogeneous Boreal White Chalk succession of the North German Basin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon isotopic data from the Selinde section in the southeastern part of the Siberian platform area are correlated with the reference isotopic profile from the Lower Cambrian stratotype sections of the Lena Aldan region, but also show additional d13C excursions unrecognized there. The chemostratigraphic correlation suggests that the geological and fossil record of the lower Pestrotsvet Formation in the Selinde section has a deeper history than the stratotype region. This conclusion is important for both constraining the age of the earliest Cambrian marine transgression on the Siberian platform and providing a clearer understanding of the pace and order of early Cambrian geochemical and biological events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions of Late Quaternary surface sediment and sediment cores from the south Atlantic and southeast Pacific sectors of the Southern Ocean are used to constrain the provenance and transport mechanisms of their terrigenous component. We report isotopic and mineralogical data for core samples from three localities, the Mid-Atlantic Ridge at 41°S and the northern and southern Scotia Sea. In addition, data for surface sediment samples from the south Atlantic and southeast Pacific sectors of the Southern Ocean are presented. The variations of Sr and Nd isotopic compositions of the bulk sediment samples in all cores were correlated with the magnetic susceptibility of the sediment and with the inferred glacial-interglacial stages. The isotopic data indicate that, during glacial periods, sediment was delivered from continental crust with a shorter residence time than that supplying material during interglacial periods. At the core site near the Mid-Atlantic Ridge, Nd isotopic, combined with mineralogical evidence indicates interglacial period deposition of a relatively high amount of kaolinite and silt with low epsilon-Nd values < -8. The material was probably supplied by North Atlantic Deep Water from low latitudes. For glacial periods, a high contribution of silt and clay with epsilon-Nd > -4.5, probably derived from southern South America, was indicated. The glacial-interglacial shift in sources may be due to either a decreasing influence of North Atlantic Deep Water during glacial times or by a larger contribution of glaciogenic detritus from southern South America. At the core site in the northern Scotia Sea, sediment of interglacial periods is dominated by smectite with epsilon-Nd < - 6 and silt with epsilon-Nd > -4. We suggest that smectite was derived from the Falkland shelf and silt was derived from the Argentinian shelf. During glacial periods, the Argentinian shelf was an important source for silt and chlorite with epsilon-Nd > -4. The contribution from the Falkland shelf seems to have remained similar during glacial and interglacial periods. Hydrographic transport by bottom currents and turbidites could account for the high glacial detrital flux. An evaluation of the significance of an aeolian contribution to deep sea sediment suggests that it plays only a minor role. In the southern Scotia Sea, the Antarctic Peninsula is considered an important source for young material with epsilon-Nd > -4, in particular during glacial periods. During interglacial periods, sediment supply from the Antarctic Peninsula was lower than during glacial times, resulting in a relatively high contribution of old material (epsilon-Nd < -8) from East Antarctica. Deep water currents and icebergs could account for the transport of the old component to the southern Scotia Sea. The accumulation rates of material from the various source regions for glacial times are in agreement with an increase in the strength of the Antarctic Circumpolar Current. The production rate and the circulation pattern of bottom water in the Weddell Sea appear to have remained similar over most of the last 150 kyr.