805 resultados para ICE-SHEET
Resumo:
Color variations were interpreted in paleoceanographic terms for the late Pliocene-Pleistocene sediments recovered by ODP Leg 172 on deep-sea drifts at Blake-Bahama Outer Ridge and northeastern Bermuda Rise. The color-derived parameters used in interpretation included predicted carbonate content, terrigenous fluxes, and hematite content. Abundance of Upper Carboniferous spores indicates that the hematite is probably derived from the Permo-Carboniferous red beds of the Canadian Maritimes. In the last 800 kyr sedimentation pattern changes on the Blake-Bahama Outer Ridge were determined by the sediment delivery to the deep basin as well as circulation changes. Sediment delivery increased during glacials (especially during the last 500 kyr and particularly since Stage 6). A fundamental change in the thermohaline circulation occurred at about 500 ka corresponding to the end of the Mid-Pleistocene Transition period at the onset of the predominant 100-kyr climate cyclicity. Sedimentation related to WBUC had intensified at that time and had become more focused at depths below 3000 m. Changes in hematite content and sedimentation rate show a pulse of sediment via the St. Lawrence outlet at the Pliocene-Pleistocene boundary suggesting that a likely change in the hydrography/physiography of the Laurentide Ice Sheet could have been involved in the climatic and ocean circulation changes at that time.
Resumo:
The study was carried out from April 30 until July 13 of 1997 in Adventfjorden (Spitsbergen). Formation of a less saline and warmer surface water (~1 m thick) caused by melting of the ice was observed in the fjord during the first days of May. In summer the less saline surface layer was about 3 m thick. Euphotic depth measured under the ice sheet reached 12 m, whereas load of mineral matter brought with riverine discharge in summer (content of total particulate matter in the fjord reached 1.66 kg/m**2) dramatically reduced euphotic zone depth to 0.35 m. By pigment measurement three phases of phytoplankton development in Adventfjorden were distinguished: (1) spring bloom that has started under fast ice and reached maximum in the mid of May, (2) stagnation period in June, (3) increase of pigment concentration in July, what could indicate start of the next algae bloom. Analyses of chlorophylls and carotenoids revealed that diatoms (chl c, fucoxanthin), and green algae (chl b, lutein) dominated phytoplankton community in the fjord. Moreover, presence of peridinin indicates presence of Dinophyta and alloxanthin - occurence of Cryptophyta. In May and June 1997 phytoplankton appeared mainly in the surface of water, while in July, as a result of inflow of turbulent riverine waters into Adventfjorden, algae cells were pushed down and the highest numbers were observed at depth ~20 m. Great phaeopigments to chl a ratio (= 0.54) found in fjord seston in June and July probably shows strong impact of zooplankton grazing on phytoplankton development. High contribution of chlorophyllide a in porphyrin a poll in samples collected under fast ice (chlorophyllide a / chl a ratio = 0.18) reflects the final stage of algal communitie succession in ice, just before spring ice melt and release of biota to oceanic water. Chlorophyllide a content during summer was minor or not detectable, demonstrating that diatom cells were in good physiological condition. High chl a allomer / chl a ratio (average = 0.11 for the period investigated) confirms high oxygen concentration in environment of Adventfjorden.
Resumo:
In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.
Resumo:
The dataset contains the revised age models and foraminiferal records obtained for the Last Interglacial period in six marine sediment cores: - the Southern Ocean core MD02-2488 (age model, sea surface temperatures, benthic d18O and d13C for the period 136-108 ka), - the North Atlantic core MD95-2042 (age model, planktic d18O, benthic d18O and d13C for the period 135-110 ka), - the North Atlantic core ODP 980 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the North Atlantic core CH69-K09 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the Norwegian Sea core MD95-2010 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O, ice-rafted detritus for the period 134-110 ka), - the Labrador Sea core EW9302-JPC2 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O for the period 134-110 ka).
Resumo:
An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.
Resumo:
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.
Resumo:
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden, is discussed based on sub-bottom seismic records and sediment cores. The sea floor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjorden up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from the glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front retreated from the outermost shelf around 14.8 ka. A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was interrupted by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscandian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isfjorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice front terminated far out in the main fjord. The remnants of the Barents Sea Ice Sheet melted quickly away as a response to the Holocene warming around 10 ka.
Resumo:
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents-Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80-100 ka, with a mean of 88 +/- 3 ka. This implies that that the Barents-Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei-Harmon-Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents-Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.
Resumo:
About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.
Resumo:
Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.
Resumo:
High-resolution sediment records from the South China Sea reveal a winter monsoon dominated glacial regime and a summer monsoon dominated Holocene regime during the last glacial cycle. A fundamental change between regimes occurred during deglaciation through a series of millennial reoccurrences of century-scale changes in the East Asian monsoon (EAM) climate. These abrupt events centered at 17.0, 15.9, 15.5, 14.7, 13.5, 13.9, 13.3, 12.1, 11.5, and 10.7 14C ka correlate well with the millennial-scale events in the Santa Barbara Basin and the Arabian Sea, i.e. a relationship between EAM and El Niño/Southern Oscillation systems. The abrupt increases in summer monsoon imply enhanced heat transport from low-latitude sea area to the midlatitude/high-latitude land area. The phase relationship between events of EAM and ice sheet may reflect a faster EAM response and a slower ice sheet response to the insolation change. A far-reaching conclusion is that the EAM might have triggered the Northern Hemisphere deglaciation.
Resumo:
The Arkhangelsk area lies in the region that was reached by the northeastern flank of the Scandinavian ice sheet during the last glaciation. Investigations of Late Pleistocene sediments show interglacial terrestrial and marine conditions with sea level up to 52 m above the present level. An unconformity in the stratigraphy suggests a hiatus representing the Early Valdaian (Weichselian) and the beginning of the Middle Valdaian. This unconformity could be related to a low base level and isostatic depression of the area north of Arkhangelsk, either caused by ice masses advancing from the Kara and Barents ice sheets and/or to Scandinavian ice over the Kola Peninsula. During Middle Valdaian, from c. 66 ka BP, until the advance of the Late Valdaian glacier, c. 17-16 ka BP, peat formation, and northward fluvial sedimentation occurred coexisting with permafrost conditions in a later phase. Before the glacier advance, the base level rose and thick vertical accumulations of fluvial sediments were formed. Associated with this glacier advance from the north-northwest, ice damming occurred. Fluvial drainage was opposite to the present drainage pattern and deposition appeared in glaciolacustrine ponds in the area outside the limit of the glaciation. After the deglaciation that started c. 15 ka BP, permafrost conditions and downwasting of buried stagnant glacier ice prevailed until at least 10.7 ka BP.
Resumo:
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6-2.4 Ma). (2) A transitional growth phase (2.4-1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic-Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.
Resumo:
Seawater 187Os/188Os ratios for the Middle Miocene were reconstructed by measuring the 187Os/188Os ratios of metalliferous carbonates from the Pacific (DSDP 598) and Atlantic (DSDP 521) oceans. Atlantic and Pacific 187Os/188Os measurements are nearly indistinguishable and are consistent with previously published Os isotope records from Pacific cores. The Atlantic data reported here provide the first direct evidence that the long-term sedimentary 187Os/188Os record reflects whole-ocean changes in the Os isotopic composition of seawater. The Pacific and the Atlantic Os measurements confirm a long-term 0.01/Myr increase in marine 187Os/188Os ratios that began no later than 16 Ma. The beginning of the Os isotopic increase coincided with a decrease in the rate of increase of marine 87Sr/86Sr ratios at 16 Ma. A large increase of 1? in benthic foraminiferal delta18O values, interpreted to reflect global cooling and ice sheet growth, began approximately 1 million years later at 14.8 Ma, and the long-term shift toward lower bulk carbonate delta13C values began more than 2 Myr later around 13.6 Ma. The post-16 Ma increase in marine 187Os/188Os ratios was most likely forced by weathering of radiogenic materials, either old sediments or sialic crust with a sedimentary protolith. We consider two possible Miocene-specific geologic events that can account for both this increase in marine 187Os/188Os ratios and also nearly constant 87Sr/86Sr ratios: (1) the first glacial erosion of sediment-covered cratons in the Northern Hemisphere; (2) the exhumation of the Australian passive margin-New Guinea arc system. The latter event offers a mechanism, via enhanced availability of soluble Ca and Mg silicates in the arc terrane, for the maintenance of assumed low CO2 levels after 15 Ma. The temporal resolution (three samples/Myr) of the 187Os/188Os record from Site 598, for which a stable isotope stratigraphy was also constructed, is significantly higher than that of previously published records. These high resolution data suggest oscillations with amplitudes of 0.01 to 0.02 and periods of around 1 Myr. Although variations in the 187Os/188Os record of this magnitude can be easily resolved analytically, this higher frequency signal must be verified at other sites before it can be safely interpreted as global in extent. However, the short-term 187Os/188Os variations may correlate inversely with short-term benthic foraminiferal delta18O and bulk carbonate delta13C variations that reflect glacioeustatic events.