453 resultados para Drill, hydraulic
Resumo:
In the austral summer of 2006/7 the ANDRILL MIS (ANtarctic geological DRILLing- McMurdo Ice Shelf) project recovered a 1285 m sediment core from beneath the Ross Ice Shelf near Hut Point Peninsula, Ross Island, Antarctica in a flexural moat associated with the volcanic loading of Ross Island. Contained within the upper ~600 m of this core are sediments recording 38 glacial to interglacial cycles of Early Pliocene to Pleistocene time, including 13 discrete diatomite units (DU). The longest of these, DU XI, is ~76 m thick, contains two distinct unconformities marked by layers of volcanic brecciated sands, and has been assigned an Early to Mid-Pliocene age (5-3 Ma). A detailed record (avg. sample spacing of 33 cm) of the siliceous microfossil assemblages have been generated for DU XI and used in conjunction with geochemical and sedimentological data to subdivide DU XI into four discrete subunits of continuous sedimentation. Within each unit, changes in diatom assemblages have been correlated with the d18O record, providing a temporal resolution as high as 600 yr, and allowing for the construction of a detailed age model and calculation of associated sediment accumulation rates within DU XI. Results indicate a productivity-dominated sedimentary record with higher sediment accumulation rates containing a greater proportion of hemipelagic mud occurring during relatively cool periods and reduced accumulation during warmer intervals. This implies that even during periods of substantial warmth, Milankovitch-paced changes in Antarctic ice volume can be linked to ecological changes recorded as shifts in diatom assemblages.
Resumo:
The Pliocene-Quaternary sediments that we drilled at eight sites in the Gulf of California consist of silty clays to clayey silts, diatomaceous oozes, and mixtures of both types. In this chapter I have summarized various measurements of their physical properties, relating this information to burial depth and effective overburden pressure. Rapid deposition and frequent intercalations of mud turbidites may cause underconsolidation in some cases; overconsolidation probably can be excluded. General lithification begins at depths between 200 and 300 meters sub-bottom, at porosities between 55 and 60% (for silty clays) and as high as 70% (for diatomaceous ooze). Diatom-rich sediments have low strength and very high porosities (70-90%) and can maintain this state to a depth of nearly 400 meters (where the overburden pressure = 1.4 MPa). The field compressibility curves of all sites are compared to data published earlier. Where sediments are affected by basaltic sills, these curves clearly show the effects of additional loading and thermal stress (diagenesis near the contacts). Strength measurements on well-preserved hydraulic piston cores yielded results similar to those obtained on selected samples from standard drilling. Volumetric shrinkage dropped to low values at 100 to 400 meters burial depth (0.3 to 2.0 MPa overburden pressure). Porosity after shrinkage depends on the composition of sediments.
Resumo:
The paleomagnetic measurement procedure at Site 503 was similar to that described for Site 502 (See preceding chapter). Each core section was measured with the longcore spinner magnetometer at 10-cm intervals. In addition, one or more discrete samples were taken from each core section for measurement of the total magnetic vector and its stability against progressive AF demagnetization. There were noteworthy differences in conditions at Site 503, however, that affected the quality and interpretation of the magnetic data and require comment. The most serious problem we encountered was the presence of rust scale from the drill string. Although the dark flecks typically were concentrated near the top of every recovered sediment core, they also smeared down a meter or more between the core liner and sediment, even when the sediment showed no indication of drilling disturbance. Individual rust scales proved to be highly magnetic - presumably because they incorporate small pieces of unoxidized metal. The anomalously high remanent intensities, several orders of magnitude above the uncontaminated sediment values, and scattered remanent directions observed in long-core magnetic measurements on many cores from Site 503 could be attributed to the presence of rust scale.
Resumo:
Measurements were made of the magnetic properties of 13 sediment samples from cores spanning the entire depth of Hole 503A. The principal aim was to make a preliminary assessment of the magnetic fabric of material obtained from hydraulic piston coring (HPC) which, though considerably bioturbated, might retain substantial traces of any depositional alignment of magnetic grains. Earlier measurements on Deep Sea Drilling Project cores (Rees, 1971; Rees and Frederick, 1974; Hailwood and Sayre, 1979) suggested that the improved HPC sampling technique should, other things being equal, provide good magnetic fabric information. The Hole 503A sediments were known from shipboard measurements to possess comparatively strong stable remanence and therefore seemed likely subjects for this assessment.
Resumo:
The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.
Resumo:
During Leg 75 of the Deep Sea Drilling Project (DSDP) from the D/V Glomar Challenger, a 200-m deep hole was drilled at Hole 532A on the eastern side of Walvis Ridge at a water depth of 1331 m. Sediment cores were obtained by means of a hydraulic piston corer. All of the cores from this boring were designated for geotechnical studies and were distributed among eight institutions. The results of laboratory studies on these sediment cores were compiled and analyzed. Sediment properties, including physical characteristics, strength, consolidation, and permeability were studied to evaluate changes as a function of depth of burial. It was concluded that the sediment profile to the explored depth of 200 m at Walvis Ridge consists of approximately 50 m of foram-nannofossil marl (Subunit 1a) over 64 m of diatom-nannofossil marl (Subunit 1b) over nannofossil marl (Subunit 1c) to the depth explored. All three sediment units appear to be normally consolidated, although some anomalies seem to exist to a depth of 120 m. No distinct differences were found among the sediment properties of the three subunits (1a, 1b, and 1c) identified at this site.