163 resultados para Downflow beds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-developed Campanian to Maestrichtian pelagic cyclic sediments were recovered from Hole 762C on the Exmouth Plateau, off northwest Australia, during Ocean Drilling Program Leg 122. The cycles consist of nannofossil chalk (light beds) and clayey nannofossil chalk (dark beds). Both light and dark beds are strongly to moderately bioturbated, alternate on a decimeter scale, and exhibit gradual boundaries. Bioturbation introduces materials from a bed of one color into an underlying bed of another color, indicating that diagenesis is not responsible for the cyclicity. Differences in composition between the light and dark beds, revealed by calcium carbonate measurement and X-ray diffraction analysis, together with trace fossil evidence, indicate that the cycles in the sediments are a depositional feature. Diagenetic processes may have intensified the appearance of the cycles. Spectral analysis was applied to the upper Campanian to lower Maestrichtian cyclic sediments to examine the regularity of the cycles. Power spectra were calculated from time series using Walsh spectral analysis. The most predominant wavelengths of the color cycles are 34-41 cm and 71-84 cm. With an average sedimentation rate of 1.82 cm/k.y. in this interval, we found the time durations of the cycles to be around 41 k.y. and 21 k.y., respectively, comparable to the obliquity and precession periods of the Earth's rotation, which strongly suggests an orbital origin for the cycles. On the basis of sedimentological evidence and plate tectonic reconstruction, we propose the following mechanism for the formation of the cyclic sediments from Hole 762C. During the Late Cretaceous, when there was no large-scale continental glaciation, the cyclic variations in insolation, in response to cyclic orbital changes, controlled the alternation of two prevailing climates in the area. During the wetter, equable, and warmer climatic phases under high insolation, more clay minerals and other terrestrial materials were produced on land and supplied by higher runoff to a low bioproductivity ocean, and the dark clayey beds were deposited. During the drier and colder climatic phases under low insolation, fewer clay minerals were produced and put into the ocean, where bioproductivity was increased and the light beds were deposited.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores were recovered from the New Ireland Basin, east of Papua New Guinea, in order to investigate the late Quaternary eruptive history of the Tabar-Lihir-Tanga-Feni (TLTF) volcanic chain. Foraminifera d18O profiles were matched to the low-latitude oxygen isotope record to date the cores, which extend back to the early part of d18O Stage 9 (333 ka). Sedimentation rates decrease from >10 cm/1000 yr in cores near New Ireland to ~2 cm/1000 yr further offshore. The cores contain 36 discrete ash beds, mostly 1-8 cm thick and interpreted as either fallout or distal turbidite deposits. Most beds have compositionally homogeneous glass shard populations, indicating that they represent single volcanic events. Shards from all ash beds have the subduction-related pattern of strong enrichment in the large-ion lithophile elements relative to MORB, but three distinct compositional groups are apparent: Group A beds are shoshonitic and characterised by >1300 ppm Sr, high Ce/Yb and high Nb/Yb relative to MORB, Group B beds form a high-K series with MORB-like Nb/Yb but high Ce/Yb and well-developed negative Eu anomalies, whereas Group C beds are transitional between the low-K and medium-K series and characterised by flat chondrite-normalised REE patterns with low Nb/Yb relative to MORB. A comparison with published data from the TLTF chain, the New Britain volcanic arc and backarc including Rabaul, and Bagana on Bougainville demonstrates that only Group A beds share the distinctive phenocryst assemblage and shoshonitic geochemistry of the TLTF lavas. The crystal- and lithic-rich character of the Group A beds point to a nearby source, and their high Sr, Ce/Yb and Nb/Yb match those of Tanga and Feni lavas. A youthful stratocone on the eastern side of Babase Island in the Feni group is the most probable source. Group A beds younger than 20 ka are more fractionated than the older Group A beds, and record the progressive development of a shallow level magma chamber beneath the cone. In contrast, Group B beds represent glass-rich fallout from voluminous eruptions at Rabaul, whereas Group C beds represent distal glass-rich fallout from elsewhere along the volcanic front of the New Britain arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure (pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg/m**2/year. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.