156 resultados para Cold fronts
Resumo:
Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue incorporation of C and N and metabolic-derived C incorporation into the skeleton were traced following the additions of different food concentrations (100, 300, 1300 µg C/l) and two ratios of suspended bacterial and algal biomass (1:1, 3:1). Respiration and tissue incorporation by L. pertusa increased markedly following exposure to higher food concentrations. The net growth efficiency of L. pertusa was low (0.08±0.03), which is consistent with their slow growth rates. The contribution of algae and bacteria to total coral assimilation was proportional to the food mixture in the two lowest food concentrations, but algae were preferred over bacteria as food source at the highest food concentration. Similarly, the stoichiometric uptake of C and N was coupled in the low and medium food treatment, but was uncoupled in the high food treatment and indicated a comparatively higher uptake or retention of bacterial carbon as compared to algal nitrogen. We argue that behavioural responses for these small-sized food particles, such as tentacle behaviour, mucus trapping and physiological processing, are more likely to explain the observed food selectivity as compared to physical-mechanical considerations. A comparison of the experimental food conditions to natural organic carbon concentrations above CWC reefs suggests that L. pertusa is well adapted to exploit temporal pulses of high organic matter concentrations in the bottom water caused by internal waves and down-welling events.
Resumo:
High acoustic seafloor-backscatter signals characterize hundreds of patches of methane-derived authigenic carbonates and chemosynthetic communities associated with hydrocarbon seepage on the Nile Deep Sea Fan (NDSF) in the Eastern Mediterranean Sea. During a high-resolution ship-based multibeam survey covering a ~ 225 km**2 large seafloor area in the Central Province of the NDSF we identified 163 high-backscatter patches at water depths between 1500 and 1800 m, and investigated the source, composition, turnover, flux and fate of emitted hydrocarbons. Systematic Parasound single beam echosounder surveys of the water column showed hydroacoustic anomalies (flares), indicative of gas bubble streams, above 8% of the high-backscatter patches. In echosounder records flares disappeared in the water column close to the upper limit of the gas hydrate stability zone located at about 1350 m water depth due to decomposition of gas hydrate skins and subsequent gas dissolution. Visual inspection of three high-backscatter patches demonstrated that sediment cementation has led to the formation of continuous flat pavements of authigenic carbonates typically 100 to 300 m in diameter. Volume estimates, considering results from high-resolution autonomous underwater vehicle (AUV)-based multibeam mapping, were used to calculate the amount of carbonate-bound carbon stored in these slabs. Additionally, the flux of methane bubbles emitted at one high-backscatter patch was estimated (0.23 to 2.3 × 10**6 mol a**-1) by combined AUV flare mapping with visual observations by remotely operated vehicle (ROV). Another high-backscatter patch characterized by single carbonate pieces, which were widely distributed and interspaced with sediments inhabited by thiotrophic, chemosynthetic organisms, was investigated using in situ measurements with a benthic chamber and ex situ sediment core incubation and allowed for estimates of the methane consumption (0.1 to 1 × 10**6 mol a**-1) and dissolved methane flux (2 to 48 × 10**6 mol a**-1). Our comparison of dissolved and gaseous methane fluxes as well as methane-derived carbonate reservoirs demonstrates the need for quantitative assessment of these different methane escape routes and their interaction with the geo-, bio-, and hydrosphere at cold seeps.
Resumo:
Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.
Resumo:
The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high d11B compositions ranging from 23.2 per mil to 28.7 per mil. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pH(cf)), being elevated by ~0.6-0.8 units (Delta pH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower d11B composition of 15.5 per mil, with a corresponding lower Delta pH value of ~0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pH(T) and shows an approximate linear correlation with Delta pH(Desmo) = 6.43 - 0.71 pH(T) (r**2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where Delta pH(Desmo) = 1.09 - 0.14 Omega(arag) (r**2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pH(cf), and consequently Omega(cf), of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+ -ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (d11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium.
Resumo:
This study presents aggradation rates supplemented for the first time by carbonate accumulation rates from Mediterranean cold-water coral sites considering three different regional and geomorphological settings: (i) a cold-water coral ridge (eastern Melilla coral province, Alboran Sea), (ii) a cold-water coral rubble talus deposit at the base of a submarine cliff (Urania Bank, Strait of Sicily) and (iii) a cold-water coral deposit rooted on a predefined topographic high overgrown by cold-water corals (Santa Maria di Leuca coral province, Ionian Sea). The mean aggradation rates of the respective cold-water coral deposits vary between 10 and 530 cm kyr?1 and the mean carbonate accumulation rates range between 8 and 396 g cm?2 kyr?1 with a maximum of 503 g cm?2 kyr?1 reached in the eastern Melilla coral province. Compared to other deep-water depositional environments the Mediterranean cold-water coral sites reveal significantly higher carbonate accumulation rates that were even in the range of the highest productive shallow-water Mediterranean carbonate factories (e.g. Cladocora caespitosa coral reefs). Focusing exclusively on cold-water coral occurrences, the carbonate accumulation rates of the Mediterranean cold-water coral sites are in the lower range of those obtained for the prolific Norwegian coral occurrences, but exhibit much higher rates than the cold-water coral mounds off Ireland. This study clearly indicates that cold-water corals have the potential to act as important carbonate factories and regional carbonate sinks within the Mediterranean Sea. Moreover, the data highlight the potential of cold-water corals to store carbonate with rates in the range of tropical shallow-water reefs. In order to evaluate the contribution of the cold-water coral carbonate factory to the regional or global carbonate/carbon cycle, an improved understanding of the temporal and spatial variability in aggradation and carbonate accumulation rates and areal estimates of the respective regions is needed.