178 resultados para Cadmium-sulfide


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In summer 2006 integrated geological, geochemical, hydrological, and hydrochemical studies were carried out in the relict anoxic Mogil'noe Lake (down to 16 m depths) located in the Kil'din Island in the Barents Sea. Chemical and grain size compositions of bottom sediments from the lake (permanently anoxic basin) and from the Baltic Sea deeps (periodically anoxic basins) were compared. Vertical location of the hydrogen sulfide layer boundary in the lake (9-11 m depths) was practically the same from 1974 up to now. Concentrations of suspended matter in the lake in June and July 2006 appeared to be close to its summer concentrations in seawater of the open Baltic Sea. Muds from the Mogil'noe Lake compared to those of the Baltic Sea deeps are characterized by fluid and flake consistency and by pronounced admixtures of sandy and silty fractions (probably of eolic origin). Lacustrine mud contains much plant remains; iron sulfides and vivianite were also found. Concentrations of 22 elements determined in lacustrine bottom sediments were of the same levels as those found here 33 years ago. Concentrations also appeared to be close to those in corresponding grain size types of bottom sediments in the Baltic Sea. Low C_org/N values (aver. 5.0) in muds of the Mogil'noe Lake compared to ones for muds of the Baltic Sea deeps (aver. 10) evidence considerable planktogenic component in organic matter composition of the lacustrine muds. No indications were reveled for anthropogenic contaminations of the lacustrine bottom sediments with toxic metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Logatchev hydrothermal vent field (14°45'N, Mid-Atlantic Ridge) is located in a ridge segment characterized by mantle-derived ultramafic outcrops. Compared to basalt-hosted vents, Logatchev high temperature fluids are relatively low in sulfide indicating that the diffuse, low temperature fluids of this vent field may not contain sufficient sulfide concentrations to support a chemosymbiotic invertebrate community. However, the high abundances of bathymodiolin mussels with bacterial symbionts related to free-living sulfur oxidizing bacteria suggested that bioavailable sulfide is present at Logatchev. To clarify if diffuse fluids above mussel beds of Bathymodiolus puteoserpentis provide the reductants and oxidants needed by their symbionts for aerobic sulfide oxidation, in situ microsensor measurements of dissolved hydrogen sulfide and oxygen were combined with simultaneous temperature measurements. High temporal fluctuations of all three parameters were measured above the mussel beds. H2S and O2 co-existed with mean concentrations between 9-31 µM (H2S) and 216-228 µM (O2). Temperature maxima (<= 7.4°C) were generally concurrent with H2S maxima (<= 156 µM) and O2 minima (>= 142 µM). Long-term measurements for 250 days using temperature as a proxy for oxygen and sulfide concentrations indicated that the mussels were neither oxygen- nor sulfide-limited. Our in situ measurements at Logatchev indicate that sulfide may also be bioavailable in diffuse fluids from other ultramafic-hosted vents along slow- and ultraslow-spreading ridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A representative collection of hydrothermal manifestations was sampled practically from all hydrothermal mounds of the Broken Spur hydrothermal vent field with use of the Mir manned submersibles during three cruises of R/V Akademik Mstislav Keldysh. Mineral associations characteristic for different morphological types of sulfide ores from hydrothermal pipes, plates, and diffusers are assessed. Particular attention is paid to distribution of minor elements and their distribution patterns determined by mineralogical zonation. Measured isotopic composition of sulfur in sulfide minerals varies from 0.4 to 5.2 per mil that indicates their similarity with ores from the Snake Pit vent field and is related to dilution of hot ore-bearing solutions by seawater and reduction of water sulfate ions to H2S with heavy isotopic composition.