349 resultados para CHACO AUSTRAL
Resumo:
Wollongong, Australia is an urban site at the intersection of anthropogenic, biomass burning, biogenic and marine sources of atmospheric trace gases. The location offers a valuable opportunity to study drivers of atmospheric composition in the Southern Hemisphere. Here, a record of surface carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) was measured with an in situ Fourier transform infrared trace gas analyser between April 2011 and August 2014. Clean air was found to arrive at Wollongong in approximately 10% of air masses. Biomass burning influence was evident in the average annual cycle of clean air CO during austral spring. A significant negative short-term trend was found in clean air CO (-1.5 nmol/mol/a), driven by a reduction in northern Australian biomass burning. Significant short-term positive trends in clean air CH4 (5.4 nmol/mol/a) and CO2 (1.9 ?mol/mol/a) were consistent with the long-term global average trends. Polluted Wollongong air was investigated using wind-direction/wind-speed clustering, which revealed major influence from local urban and industrial sources from the south. High values of CH4, with anthropogenic DCH4/DCO2 enhancement ratio signatures, originated from the northwest, in the direction of local coal mining. A pollution climatology was developed for the region using back trajectory analysis and DO3/DCO enhancement ratios. Ozone production environments in austral spring and summer were associated with anticyclonic meteorology on the east coast of Australia, while ozone depletion environments in autumn and winter were associated with continental transport, or fast moving trajectories from southern latitudes. This implies the need to consider meteorological conditions when developing policies for controlling air quality.
Resumo:
Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of dissolved organic matter (DOM) and particulate organic matter (POM) dynamics in the southern Ross Sea. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were at background concentrations of approximately 42 and 3 µM C, respectively, during the late winter conditions in October. As the spring phytoplankton bloom progressed, organic matter increased, and by January DOC and POC reached as high as 30 and 107 µM C, respectively, in excess of initial wintertime conditions. Stocks and concentrations of DOC and POC returned to near background values by autumn (April). Approximately 90% of the accumulated organic matter was partitioned into POM, with modest net accumulation of DOM stocks despite large net organic matter production and the dominance of Phaeocystis antarctica. Changes in NO3 concentration from wintertime values were used to calculate the equivalent biological drawdown of dissolved inorganic carbon (DICequiv). The fraction of DICequiv drawdown resulting in net DOC production was relatively constant (ca. 11%), despite large temporal and spatial variability in DICequiv drawdown. The C : N (molar ratio) of the seasonally produced DOM had a geometric mean of 6.2 and was nitrogen-rich compared to background DOM. The DOM stocks that accumulate in excess of deep refractory background stocks are often referred to as "semi-labile" DOM. The "semi-labile" pool in the Ross Sea turns over on timescales of about 6 months. As a result of the modest net DOM production and its lability, the role DOM plays in export to the deep sea is small in this region.
Resumo:
Above the Walvis Ridge, in the SE Atlantic Ocean, we collected living plantkic foraminifera from the upper water column using depth stratified plantkon tows. The oxygen isotope composition (d18Oc) in shells of foraminifera and shell concentration profiles show seasonal and depth habitats of individual species. The tow results are compared with the average annual deposition d18Oc from sediment traps and the interannual average d18Oc of fossil specimens in top sediments at the same site. The species Globigerinita glutinata best reflects the austral winter/spring sea surface temperature (SST). Its d18Oc signal in top sediments remains pristine. In contrast, tow results also show that Globigerinoides ruber continues to calcify below the surface mixed layer (SML), i.e., down to the deep chlorophyll maximum (DCM); hence its d18Oc signature of exported specimens reflects the SST only when SML incorporates the DCM. Deep tow and sediment trap results show that both Globorotalia truncatulinoides and Globorotalia inflata record the temperature between 150 and 350 m, depending on the season and the shell size. However, for all fossil taxa in sediments apart from Globigerinita glutinata, we observe a positive d18Oc shift with respect to the sediment trap and plankton tow values, likely related to the interannual flux changes and deep encrustation.
Resumo:
Two cruises were carried out during the Austral spring-summer (November 1995 - January 1996: FRUELA 95, and January - February 1996: FRUELA 96), sampling in Bellingshausen Sea, western Bransfield Strait and Gerlache Strait. We investigated whether there were any spatial (among locations) or temporal (between cruises) differences in abundance and biomass of microbial heterotrophic and autotrophic assemblages. Changes in the concentration of chlorophyll a, prokaryotes, heterotrophic and phototrophic nanoflagellates abundance and biomass were followed in the above mentioned locations close to the Antarctic Peninsula. Parallel to these measurements we selected seven stations to determine grazing rates on prokaryotes by protists at a depth coincident with the depth of maximum chlorophyll a concentration. Measuring the disappearance of fluorescent minicells over 48 h assessed grazing by the protist community. From prokaryotes grazing rates, we estimated how much prokaryotic carbon was channeled to higher trophic levels (protists), and whether this prokaryotic carbon could maintain protists biomass and growth rates. In general higher values were reported for Gerlache Strait than for the other two areas. Differences between cruises were more evident for the oligotrophic areas in Bellingshausen Sea and Bransfield Strait than in Gerlache Strait (eutrophic area). Higher values for phototrophic (at least for chlorophyll a concentration) and abundance of all heterotrophic microbial populations were recorded in Bellingshausen Sea and Bransfield Strait during late spring - early summer (FRUELA 95) than in mid-summer (FRUELA 96). However, similar results for these variables were observed in Gerlache Strait as in spring-early summer as well as in mid-summer. Also, we found differences in grazing rates on prokaryotes among stations located in the three areas and between cruises. Thus, during late spring-early summer (FRUELA 95), the prokaryotic biomass consumed from the standing stock was higher in Bellingshausen Sea (26%/day) and Gerlache Strait (18-26%/day) than in Bransfield Strait (0.68-14%/day). During mid-summer (FRUELA 96) a different pattern was observed. The station located in Bellingshausen Sea showed higher values of prokaryotic biomass consumed (11%/day) than the one located in Gerlache Strait (2.3%/day). Assuming HNF as the main prokaryotic consumers, we estimated that the prokaryotic carbon consumed by heterotrophic nanoflagellates (HNF) barely covers their carbon requirements for growth. These results suggest that in Antarctic waters, HNF should feed in other carbon sources than prokaryotes.