154 resultados para Brasilian Amazonia
Resumo:
Numerous studies use major element concentrations measured on continental margin sediments to reconstruct terrestrial climate variations. The choice and interpretation of climate proxies however differ from site to site. Here we map the concentrations of major elements (Ca, Fe, Al, Si, Ti, K) in Atlantic surface sediments (36°N-49°S) to assess the factors influencing the geochemistry of Atlantic hemipelagic sediments and the potential of elemental ratios to reconstruct different terrestrial climate regimes. High concentrations of terrigenous elements and low Ca concentrations along the African and South American margins reflect the dominance of terrigenous input in these regions. Single element concentrations and elemental ratios including Ca (e.g., Fe/Ca) are too sensitive to dilution effects (enhanced biological productivity, carbonate dissolution) to allow reliable reconstructions of terrestrial climate. Other elemental ratios reflect the composition of terrigenous material and mirror the climatic conditions within the continental catchment areas. The Atlantic distribution of Ti/Al supports its use as a proxy for eolian versus fluvial input in regions of dust deposition that are not affected by the input of mafic rock material. The spatial distributions of Al/Si and Fe/K reflect the relative input of intensively weathered material from humid regions versus slightly weathered particles from drier areas. High biogenic opal input however influences the Al/Si ratio. Fe/K is sensitive to the input of mafic material and the topography of Andean river drainage basins. Both ratios are suitable to reconstruct African and South American climatic zones characterized by different intensities of chemical weathering in well-understood environmental settings.
Resumo:
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.