156 resultados para Batch injection analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 leakage from subsurface storage sites is one of the main concerns connected with the CCS technology. As CO2 leakages into near surface formations appear to be very unlikely within pilot CCS projects, the aim of this work is to emulate a leakage by injecting CO2 into a near surface aquifer. The two main questions pursued by the injection test are (1) to investigate the impact of CO2 on the hydrogeochemistry of the groundwater as a base for groundwater risk assessment and (2) to develop and apply monitoring methods and monitoring concepts for detecting CO2 leakages in shallow aquifers. The presented injection test is planned within the second half of 2010, as a joint project of the University of Kiel (Germany), the Helmholtz-Centre for Environmental Research (Leipzig, Germany) and the Engineering Company GICON (Dresden, Germany). The test site has been investigated in detail using geophysical methods as well as direct-push soundings, groundwater well installation and soil and groundwater analyses. The present paper presents briefly the geological and hydrogeological conditions at the test site as well as the planned injection test design and monitoring concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-molecular-weight (LMW) alcohols are produced during the microbial degradation of organic matter from precursors such as lignin, pectin, and carbohydrates. The biogeochemical behavior of these alcohols in marine sediment is poorly constrained but potentially central to carbon cycling. Little is known about LMW alcohols in sediment pore waters because of their low concentrations and high water miscibility, both of which pose substantial analytical challenges. In this study, three alternative methods were adapted for the analysis of trace amounts of methanol and ethanol in small volumes of saline pore waters: direct aqueous injection (DAI), solid-phase microextraction (SPME), and purge and trap (P&T) in combination with gas chromatography (GC) coupled to either a flame ionization detector (FID) or a mass spectrometer (MS). Key modifications included the desalination of samples prior to DAI, the use of a threaded midget bubbler to purge small-volume samples under heated conditions and the addition of salt during P&T. All three methods were validated for LMW alcohol analysis, and the lowest detection limit (60 nM and 40 nM for methanol and ethanol, respectively) was achieved with the P&T technique. With these methods, ambient concentrations of volatile alcohols were determined for the first time in marine sediment pore waters of the Black Sea and the Gulf of Mexico. A strong correlation between the two compounds was observed and tentatively interpreted as being controlled by similar sources and sinks at the examined stations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA extraction was carried out as described on the MICROBIS project pages (http://icomm.mbl.edu/microbis ) using a commercially available extraction kit. We amplified the hypervariable regions V4-V6 of archaeal and bacterial 16S rRNA genes using PCR and several sets of forward and reverse primers (http://vamps.mbl.edu/resources/primers.php). Massively parallel tag sequencing of the PCR products was carried out on a 454 Life Sciences GS FLX sequencer at Marine Biological Laboratory, Woods Hole, MA, following the same experimental conditions for all samples. Sequence reads were submitted to a rigorous quality control procedure based on mothur v30 (doi:10.1128/AEM.01541-09) including denoising of the flow grams using an algorithm based on PyroNoise (doi:10.1038/nmeth.1361), removal of PCR errors and a chimera check using uchime (doi:10.1093/bioinformatics/btr381). The reads were taxonomically assigned according to the SILVA taxonomy (SSURef v119, 07-2014; doi:10.1093/nar/gks1219) implemented in mothur and clustered at 98% ribosomal RNA gene V4-V6 sequence identity. V4-V6 amplicon sequence abundance tables were standardized to account for unequal sampling effort using 1000 (Archaea) and 2300 (Bacteria) randomly chosen sequences without replacement using mothur and then used to calculate inverse Simpson diversity indices and Chao1 richness (doi:10.2307/4615964). Bray-Curtis dissimilarities (doi:10.2307/1942268) between all samples were calculated and used for 2-dimensional non metric multidimensional scaling (NMDS) ordinations with 20 random starts (doi:10.1007/BF02289694). Stress values below 0.2 indicated that the multidimensional dataset was well represented by the 2D ordination. NMDS ordinations were compared and tested using Procrustes correlation analysis (doi:10.1007/BF02291478). All analyses were carried out with the R statistical environment and the packages vegan (available at: http://cran.r-project.org/package=vegan), labdsv (available at: http://cran.r-project.org/package=labdsv), as well as with custom R scripts. Operational taxonomic units at 98% sequence identity (OTU0.03) that occurred only once in the whole dataset were termed absolute single sequence OTUs (SSOabs; doi:10.1038/ismej.2011.132). OTU0.03 sequences that occurred only once in at least one sample, but may occur more often in other samples were termed relative single sequence OTUs (SSOrel). SSOrel are particularly interesting for community ecology, since they comprise rare organisms that might become abundant when conditions change.16S rRNA amplicons and metagenomic reads have been stored in the sequence read archive under SRA project accession number SRP042162.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diazotrophic (N2-fixing) cyanobacteria provide the biological source of new nitrogen for large parts of the ocean. However, little is known about their sensitivity to global change. Here we show that the single most important nitrogen fixer in today's ocean, Trichodesmium, is strongly affected by changes in CO2 concentrations. Cell division rate doubled with rising CO2 (glacial to projected year 2100 levels) prompting lower carbon, nitrogen and phosphorus cellular contents, and reduced cell dimensions. N2 fixation rates per unit of phosphorus utilization as well as C:P and N:P ratios more than doubled at high CO2, with no change in C:N ratios. This could enhance the productivity of N-limited oligotrophic oceans, drive some of these areas into P limitation, and increase biological carbon sequestration in the ocean. The observed CO2 sensitivity of Trichodesmium could thereby provide a strong negative feedback to atmospheric CO2 increase.