222 resultados para Arcturus (Ship)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 µM C at either end of the transect (12°N and 12°S) to about 60 µM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 µM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000 m were virtually monotonic at about 36 µM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus sigmaT exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C/m**2/day at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface and upper-layer pollution of seas and oceans by crude oil and refinery products is under study by investigators in many countries. The Intergovernmental Oceanographic Commission (IOC) and World Meteorological Organization (WMO) have prepared an international experimental project that is to be carried out within the framework of the Integrated Global Oceanic Station System (IGOSS). The purpose of the project is to prepare a picture of distribution and dynamics of oil pollution. Parameters to be observed include: oil patches (slicks), floating lumps of tar on the surface, and hydrocarbons emulsified and dissolved in water. Cruise 22 of R/V Akademik Kurchatov took the ship through regions being the most suitable for pollution studies. They were conducted from March through June 1976. On the cruise, oil slicks were observed visually by a procedure recommended by the international program. Areas of the slicks were determined from speed of the ship and time required to cross them. Surface samples were taken along the path of the ship for determination of concentrations of dissolved and emulsified hydrocarbons in water. In addition, samples were taken from deep water by a 7-liter vinyl water bottle at 17 stations. Hydrocarbons present in the samples were extracted immediately with carbon tetrachloride. Final determination of hydrocarbons was made by infrared spectrophotometry. This method is currently accepted in the Soviet Union in an arbitration capacity for determination of petroleum products dissolved and emulsified in sea water. Infrared spectrophotometry is used to determine hydrocarbons containing methyl and methylene groups, but they are not identified as to origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report on data from an oceanographic cruise on the German research vessel Meteor covering large parts of the Mediterranean Sea during spring of 2011. The main objective of this cruise was to conduct measurements of physical, chemical and biological variables on a section across the Mediterranean Sea with the goal of producing a synoptic picture of the distribution of relevant physical and biogeochemical properties, in order to compare those to historic data sets. During the cruise, a comprehensive data set of relevant variables following the guide lines for repeat hydrography outlined by the GO-SHIP group (http://www.go-ship.org/) was collected. The measurements include salinity and temperature (CTD), an over-determined carbonate system, inorganic nutrients, oxygen, transient tracers (CFC-12, SF6), helium isotopes and tritium, and carbon isotopes. The cruise sampled all major basins of the Mediterranean Sea following roughly an east-to-west section from the coast of Lebanon through to the Strait of Gibraltar, and to the coast of Portugal. Also a south-to-north section from the Ionian Sea to the Adriatic Sea was carried out. Additionally, sampling in the Aegean, Adriatic and Tyrrhenian Seas were carried out. The sections roughly followed lines and positions that have been sampled previously during other programs, thus providing the opportunity for comparative investigations of the temporal development of various parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.