160 resultados para Aortic calcification
Resumo:
Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under natural light and temperature regimes for 110 days. Although elevated pCO2 exposure on average reduced calcification, individual colonies showed unique responses ranging from declines in positive calcification to negative calcification (decalcification) to no change. Similarly, mortality was greater on average in elevated pCO2, but also showed colony-specific patterns. High variation in colony responses suggests the possibility that ongoing OA may lead to natural selection of OA-tolerant colonies within a coral population.
Resumo:
Atmospheric carbon dioxide (pCO2) has risen from approximately 280 to 400 ppm since the Industrial Revolution, due mainly to the combustion of fossil fuels, deforestation, and cement production. It is predicted to reach as high as 900 ppm by the end of this century. Ocean acidification resulting from the release of anthropogenic CO2 has been shown to impair the ability of some marine calcifiers to build their shells and skeletons. Here, we present the results of ocean acidification experiments designed to assess the effects of an increase in atmospheric pCO2 from ca. 448 to 827 ppm on calcification rates of the tropical urchin Echinometra viridis. Experiments were conducted under the urchin's winter (20 °C) and summer (30 °C) water temperatures in order to identify seasonal differences in the urchin's response to ocean acidification. The experiments reveal that calcification rates decreased for urchins reared under elevated pCO2, with the decline being more pronounced under wintertime temperatures than under summertime temperatures. These results indicate that the urchin E. viridis will be negatively impacted by CO2-induced ocean acidification that is predicted to occur by the end of this century. These results also suggest that impact of CO2-induced ocean acidification on urchin calcification will be more severe in the winter and in cooler waters.
Resumo:
Increasing atmospheric pCO2 reduces the saturation state of seawater with respect to the aragonite, high-Mg calcite (Mg/Ca > 0.04), and low-Mg calcite (Mg/Ca < 0.04) minerals from which marine calcifiers build their shells and skeletons. Notably, these polymorphs of CaCO3 have different solubilities in seawater: aragonite is more soluble than pure calcite, and the solubility of calcite increases with its Mg-content. Although much recent progress has been made investigating the effects of CO2-induced ocean acidification on rates of biological calcification, considerable uncertainties remain regarding impacts on shell/skeletal polymorph mineralogy. To investigate this subject, eighteen species of marine calcifiers were reared for 60-days in seawater bubbled with air-CO2 mixtures of 409 ± 6, 606 ± 7, 903 ± 12, and 2856 ± 54 ppm pCO2, yielding aragonite saturation states of 2.5 ± 0.4, 2.0 ± 0.4, 1.5 ± 0.3, and 0.7 ± 0.2. Calcite/aragonite ratios within bimineralic calcifiers increased with increasing pCO2, but were invariant within monomineralic calcifiers. Calcite Mg/Ca ratios (Mg/CaC) also varied with atmospheric pCO2 for two of the five high-Mg-calcite-producing organisms, but not for the low-Mg-calcite-producing organisms. These results suggest that shell/skeletal mineralogy within some-but not all-marine calcifiers will change as atmospheric pCO2 continues rising as a result of fossil fuel combustion and deforestation. Paleoceanographic reconstructions of seawater Mg/Ca, temperature, and salinity from the Mg/CaC of well-preserved calcitic marine fossils may also be improved by accounting for the effects of paleo-atmospheric pCO2 on skeletal Mg-fractionation.
Resumo:
Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue-skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO(2)-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue-skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry.
Resumo:
Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.
Resumo:
A selective chemical photosynthesis inhibitor, DCMU (Dichorophenyl-dimethylurea), dissolved in DMSO (Dimethyl sulfoxide) was substituted for the dark incubation method commonly used to measure the oxygen consumption in metabolic and primary production studies. We compared oxygen fluxes during light incubations with DCMU and dark incubations procedure, on soft bottom benthos. For this purpose, we studied the effects of different DCMU concentrations. A concentration of 5 · 10-5 mol l-1 inside a clear incubation enclosure completely inhibits photosynthesis without affecting the metabolism of soft bottom benthos.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.
Resumo:
The effect of increased CO2 partial pressure (pCO2) on the community metabolism (primary production, respiration, and calcification) of a coral community was investigated over periods ranging from 9 to 30 d. The community was set up in an open-top mesocosm within which pCO2 was manipulated (411, 647, and 918 µatm). The effect of increased pCO2 on the rate of calcification of the sand area of the mesocosm was also investigated. The net community primary production (NCP) did not change significantly with respect to pCO2 and was 5.1 ± 0.9 mmol O2 m-2 h-1, Dark respiration (R) increased slightly during the experiment at high pCO2, but this did not affect significantly the NCP:R ratio (1.0 ± 0.2). The rate of calcification exhibited the trend previously reported; it decreased as a function of increasing pCO2 and decreasing aragonite saturation state. This re-emphasizes the predictions that reef calcification is likely to decrease during the next century. The dissolution process of calcareous sand does not seem to be affected by open seawater carbonate chemistry; rather, it seems to be controlled by the biogeochemistry of sediment pore water.