204 resultados para Abtei Maria Laach
Resumo:
Nitrogen fixation data from the cruise number MSM18/5 with research vessel "Maria S. Merian" from 22.08.-20.09.2011 (from Walvis Bay to Walvis Bay) in front of Angola and northern Namibia. Samples taken by CTD- rosette sampler from different depths and incubated in glass bottles (535 ml) at light intensities that resemble the in situ light intensities of the sampling depth after 15N2 gas was injected to the sample. After the incubation time of 6 hours, the complete bottle content was filtered onto a pre-combusted Whatman GF/F filter. Filters were frozen, transported to the institute on dry ice and measured in a mass spectrometer for Delta 15N. The principle of the method was described by Montoya et al. (1996) and calculation was done according to their spread sheet. From the data of the single depths, the nitrogen fixation per square meter within the upper 40 m of the water column was calculated. The methods are described in detail in a paper submitted by Wasmund et al. in 2014 to be printed in 2015. Some results are surprisingly below zero. This occurs if the Delta 15N of the blank is higher than the measurement after incubation. It indicates that no nitrogen fixation occurred. Due to natural variability, the variability of the nitrogen fixation data is high. In an overall estimate, also over several cruises, negative and positive values compensate more or less, suggesting that nitrogen fixation is insignificant in the waters in front of northern Namibia and southern Angola.
Resumo:
Respiration rates and electron transport system (ETS) activities were measured in dominant copepod species from the northern Benguela upwelling system in January-February 2011 to assess the accuracy of the ETS assay in predicting in vivo respiration rates. Individual respiration rates varied from 0.06 to 1.60 µL O2/h/ind, while ETS activities converted to oxygen consumption ranged from 0.14 to 4.46 µL O2/h/ind. ETS activities were significantly correlated with respiration rates (r**2 = 0.79, p = 0.0001). R:ETS ratios were lowest in slow-moving Eucalanidae (0.11) and highest in diapausing Calanoides carinatus copepodids CV (0.76) while fast-moving copepods showed intermediate R:ETS (0.23-0.37). 82% of the variance of respiration rates could be explained by differences in dry mass, temperature and the activity level of different copepod species. Three regression equations were derived to calculate respiration rates for diapausing, slow- and fast-moving copepods, respectively, based on parameters such as body mass and temperature. Thus, knowledge about the activity level and behavioral characteristics of copepod species can significantly increase the predictive accuracy of metabolic models, which will help to better understand and quantify the impact of copepods on nutrient and carbon fluxes in marine ecosystems.
Meteorological observations during MARIA cruise from Batavia to Hellevoetsluis started at 1836-09-24