553 resultados para 990
Resumo:
This data report provides a systematic documentation of the low-temperature alteration associated with the formation of a volcanic-rifted margin by the quantification of alteration effects and vein mineralogy and distributions in basalts recovered on Leg 152 (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). Basaltic rocks from Holes 917A and 918D have been investigated to provide a quantitative description of the extents of recrystallization and secondary mineral abundance resulting from low-temperature alteration and weathering. Only limited descriptions of alteration and secondary mineral distributions were undertaken on board ship during Leg 152, and the data presented here provide an essential complement to the shipboard logs of the limited amount of basalt recovered during Leg 163 from Sites 988, 989, and 990 (Duncan, Larsen, Allan, et al., 1996, doi:10.2973/odp.proc.ir.163.1996).
Resumo:
The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7- 21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur com- ponents. High sulfate reduction rates as well as sulfide depleted in 34S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic- hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.
Resumo:
The present data set provides contextual environmental data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The data set provides calculated averages of mesaurements made at the sampling location and depth, calculated averages from climatologies (AMODIS, VGPM) and satellite products.