726 resultados para 162-986C


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although they are fossils of uncertain origin, bolboforms are the best calcareous microfossil group for Neogene biostratigraphy in the North Atlantic. Fifty-two Bolboforma species were observed at the Hatton-Rockall Basin in Ocean Drilling Program Holes 982A (26 samples) and 982B (301 samples) and in Deep Sea Drilling Project Hole 116 (71 samples). The sequence investigated spans the interval from lower Miocene to upper Pliocene. Fourteen zones/subzones were identified and correlated with the calcareous nannoplankton zones, the planktonic foraminifer biostratigraphy, and the time (Ma). The last occurrence of the genus Bolboforma can be dated to 2.84 Ma. Different Bolboforma specimens of middle Miocene age, observed in upper Miocene and upper middle Miocene sediments at Site 982, document redeposition of sediment from the Rockall Bank into the Hatton-Rockall Basin during the latest middle Miocene and late Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A geochemical study of sediments from Ocean Drilling Program Site 983 was conducted to examine low-frequency variations in carbonate content as expressed by blue-band reflectance (450-500 nm) over the last 1.2 Ma. Sedimentary percent organic carbon, percent carbonate, and excess barium (Ba[ex]) were used as the primary tools to evaluate the factors responsible for these long-term changes. We observe positive correlation between the mass-accumulation rate of various biogenic components and the mass-accumulation rate of Ba(ex), especially in sediments younger than ~600 ka. Deeper in the section (~600-1200 ka), the correlation between Ba(ex) and the other biogenic tracers is weak. The lack of correlation between Ba(ex) and biogenic carbonate likely results either from a higher supply of terrigenous material at that time (which confounds Ba[ex] estimation), or remobilization of Ba resulting from low pore-water sulfate ion concentrations, or both. Nonbiogenic sediments at Site 983, represented by Th, K2O, and the molar Ti/Al ratio, exhibit cyclic variations that represent mixing between continental and oceanic (i.e., basaltic) terrigenous sources. The timing of these cycles matches that of the major glacial-interglacial cycles, which suggests that they result from the supply of continental material as ice-rafted debris during glacial periods and fine-grained basaltic material by bottom currents during interglacial periods. Given these observations, the most likely causes for the low-frequency carbonate variations observed in the Site 983 sediments are shifts in surface productivity and, to a lesser extent, dilution by the input of terrigenous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report natural remanent magnetization (NRM) directions and geomagnetic paleointensity proxies for part of the Matuyama Chron (0.9-2.2 Ma interval) from two sites located on sediment drifts in the Iceland Basin. At Ocean Drilling Program Sites 983 and 984, mean sedimentation rates in the late Matuyama Chron are 15.9 and 11.5 cm/kyr, respectively. For the older part of the record (>1.2 Ma), oxygen isotope data are too sparse to provide the sole basis for age model construction. The resemblance of the volume susceptibility record and a reference d18O record led us to match the two records to derive the age models. This match, based on Site 983/984 susceptibility, is consistent with available Site 983/984 benthic d18O data. Paleointensity proxies were derived from the slope of the NRM versus anhysteretic remanent magnetization plot for alternating field demagnetization in the 30-60 mT peak field range. Paleointensity lows correspond to polarity reversals at the limits of the Jaramillo, Olduvai, Cobb Mountain, and Réunion Subchrons and to seven excursions in NRM component directions. Magnetic excursions (defined here by virtual geomagnetic polar latitudes crossing the virtual geomagnetic equator) are observed at 932, 1048, 1115, 1190-1215 (Cobb Mountain Subchron), 1255, 1472-1480, 1567-1575 (Gilsa Subchron), and 1977 ka. The results indicate that geomagnetic directional excursions, associated with paleointensity minima, are a characteristic of the Matuyama Chron and probably of polarity chrons in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.