523 resultados para 135-835A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental phase relations were used to assess the role of volatiles and crustal level fractional crystallization in the petrogenesis of lavas from Hole 839B in the central Lau Basin. Melting experiments were performed on Sample 135-839B-15R-2, 63-67 cm, at 1 atm, anhydrous, and 2 kbar, H2O-saturated (~6 wt% H2O in the melt) to determine the influence of variable pressure and H2O content on phase appearances, mineral chemistry, and liquid line of descent followed during crystallization. The effects of H2O are to depress the liquidus by ~100°C, and to suppress crystallization of plagioclase and orthopyroxene relative to olivine and high-Ca clinopyroxene. At 1 atm, anhydrous, olivine and plagioclase coexist near the liquidus, whereas orthopyroxene and then clinopyroxene appear with decreasing temperature. Crystallization of 50 wt% produces a residual liquid that is rich in FeO* (10.8 wt%) and poor in Al2O3 (13.6 wt%). At 2 kbar, H2O-saturated, the liquidus phases are olivine and chromian spinel, with high-Ca clinopyroxene appearing after ~10% crystallization. Plagioclase saturation is suppressed until ~20% crystallization has occurred. The residual liquid from 35 wt% crystallization is rich in AI2O3 (17.4 wt%), and poor in MgO (4.82 wt%); it contains moderate FeO* (8.2 wt%), and resembles the low-MgO andesites recovered from Hole 839B. On the basis of these experiments we conclude that the primitive lavas recovered from Hole 839B have experienced crystallization along the Ol + Cpx saturation boundary, under hydrous conditions (an ankaramitic liquid line of descent), and variable amounts of olivine and chromian spinel accumulation. The low-MgO andesites from Hole 839B are the products of hydrous fractional crystallization, at crustal pressures, of a parent magma similar to basaltic andesite Sample 135-839B-15R-2, 63-67 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 135 backarc basin lavas are characterized by anomalously high Au contents (1.0-11.4 ppb) and strongly fractionated relative platinum group element (PGE) abundances (Pd/Ir ratio, approximately 100). The Rh and Ir contents are very low, ranging from below detection (approximately 0.02 ppb) to 0.08 ppb. The Pd and Pt contents range from <0.3 to 4 ppb. Rh, Pd, and Pt values are consistently and significantly higher in Site 836 and 839 samples relative to those from Sites 834 and 835. Major, trace, and rare earth element (REE) data suggest Sites 836 and 839 have a more pronounced arc signature than Sites 834 and 835. No correlation exists between noble metal abundance and indices of alteration or fractionation (e.g., loss on ignition (LOI), Mg#, and Cr or Ni contents), suggesting that measured values and ratios are primary and reflect characteristics of the mantle source. The evaluation of Leg 135 noble metal data with respect to potential mantle-source components is hindered by the lack of data on magmas derived from such sources. However, analyses of the limited available data for the different magma types suggest that the characteristic enrichment of Leg 135 lavas in Au, relative to Pd and Cu, cannot be derived solely from simple MORB-type or ocean-island-type mantle, or mantle depleted by a previous melt extraction event. The Au-enriched signature of the Lau basin lavas could, however, be produced through the addition of a sedimentary component from the downgoing slab. Separation of Au from the PGE occurs within oceanic hydrothermal systems and gold values of the resultant precipitates are 2-3 orders of magnitude higher than other oceanic crustal components. Even small additions of this component from the downgoing oceanic crust to a supra-subduction zone mantle melt could account for the high mean Au/Pd ratios of the Leg 135 samples (Sites 834 and 835, Au/Pd = 5.04; Sites 836 and 839, Au/Pd = 2.26).