843 resultados para 11150004 M6
Resumo:
Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1 x 1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF1000), we were able to distinguish between: (1) the coastal environments with highest values (EF1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF1000 increased with primary production up to 350 gCm**-2 yr**-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69), carbon fluxes, and the export fraction remained at low.
Resumo:
This study presents a differentiated carbonate budget for marine surface sediments from the Mid-Atlantic Ridge of the South Atlantic, with results based on carbonate grain-size composition. Upon separation into sand, silt, and clay sub-fractions, the silt grain-size distribution was measured using a SediGraph 5100. We found regionally characteristic grain-size distributions with an overall minimum at 8 µm equivalent spherical diameter (ESD). SEM observations reveal that the coarse particles (>8 µm ESD) are attributed to planktic foraminifers and their fragments, and the fine particles (<8 µm ESD) to coccoliths. On the basis of this division, the regional variation of the contribution of foraminifers and coccoliths to the carbonate budget of the sediments are calculated. Foraminifer carbonate dominates the sediments in mesotropic regions whereas coccoliths contribute most carbonate in oligotrophic regions. The grain size of the coccolith share is constant over water depth, indicating a lower susceptibility for carbonate dissolution compared to foraminifers. Finally, the characteristic grain-size distribution in fine silt (<8 µm ESD) is set into context with the coccolith assemblage counted and biometrically measured using a SEM. The coccoliths present in the silt fraction are predominantly large species (length > 4 µm). Smaller species (length < 4 µm) belong to the clay fraction (<2 µm ESD). The average length of most frequent coccolith species is connected to prominent peaks in grain-size distributions (ESD) with a shape factor. The area below Gaussian distributions fitted to these peaks is suggested as a way to quantitatively estimate the carbonate contribution of single coccolith species more precisely compared to conventional volume estimates. The quantitative division of carbonate into the fraction produced by coccoliths and that secreted by foraminifers enables a more precise estimate for source/sink relations of consumed and released CO2 in the carbon cycle. The allocation of coccolith length and grain size (ESD) suggests size windows for the separation or accumulation of distinct coccolith species in investigations that depend on non to slightly-mixed signals (e.g., isotopic studies).
Resumo:
We compared ocean atlas values of surface water [PO4]3- and [CO2(aq)] against the carbon isotopic fractionation (ep) of alkenones obtained from surface sediments of the South Atlantic and the central Pacific (Pacific data are from Pagani et al. 2002, doi:10.1029/2002PA000756). We observed a positive correlation between ep and 1/[CO2(aq)], which is opposite of what would be expected if the concentration of CO2(aq) were the major factor controlling the carbon isotopic fractionation of C37:2 alkenones. Instead, we found inverse relationships between ep and [PO4]3- for the two ocean basins (for the Atlantic, ep = -4.6*[PO4]3- + 15.1, R = 0.76; for the Pacific, ep = -4.1*[PO4]3- + 13.7, R = 0.64), suggesting that ep is predominantly controlled by growth rate, which in turn is related to nutrient concentration. The similarity of the slopes implies that a general relationship between both parameters may exist. Using the relationship obtained from the South Atlantic, we estimated surface water nutrient concentrations for the past 200,000 years from a deep-sea sediment core recovered off Angola. Low ep values, indicating high nutrient concentrations, coincide with high contents of total organic carbon and C37 alkenones, low surface water temperatures, and decreased bulk d15N values, suggesting an increased upwelling of nutrient-rich cool subsurface waters as the main cause for the observed ep decrease.
Resumo:
The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.