284 resultados para upper semicontinuity of attractors
Resumo:
Paleotemperature curves were drawn from oxygen-isotope ratios in CaCO3 of planktonic foraminiferal tests and by the micropaleontological method using quantitative relationships of their species. Two series of curves yield similar results. These data confirm that isotope composition of oxygen reflects primarily temperature, and not isotope composition in ocean water. Temperature of the upper layer of ocean water increased from north to south both during the last two glaciations and in the interglacials. All three sediment cores collected from different latitudes show approximately the same amplitudes of fluctuation of mean annual temperature during times of their accumulation, as determined independently by different methods; these amplitudes are estimated as 5-7°C.
Resumo:
Studies of picophytoplankton were carried out in the open Black Sea from February to April 1991 with concomitant blooming of diatoms. During this period cyanobacteria predominated in picoplankton averaging 98.8% of total picophytoplankton abundance and 95% of total picoplankton biomass. In February number of cells reached 1.5x10**9 per liter in the East Black Sea. Picoplankton biomass decreased during the observation period. From February to March biomass varied from 452 to 4918 mg/m**2 (av. 1632 mg/m**2), and from March through April from 4 to 656 mg/m**2 (av. 190 mg/m**2). Vertical distribution of picoplankton was determined by the upper margin of the main pycnocline. The major part of picoplankton biomass occurred in the mixed layer. With appearance of seasonal pycnoclines in the last days of March maximum biomass occurred under the upper mixed layer. No relationship was observed between Nitzschia delicatula bloom and picoplankton.
Resumo:
The isotopic (dD, d18O, d13C, and 87Sr/86Sr) and geochemical characteristics of hydrothermal solutions from the Mid-Atlantic Ridge and the material of brucite-carbonate chimneys at the Lost City hydrothermal field at 30°N, MAR, were examined to assay the role of the major factors controlling the genesis of the fluid and hydrothermal chimneys of the Lost City field. The values of dD and d18O in fluid samples indicates that solutions at the Lost City field were produced during the serpentinization of basement ultramafic rocks at temperatures higher than 200°C and at relatively low fluid/rock ratios (<1). The active role of serpentinization processes in the genesis of the Lost City fluid also follows from the results of the electron-microscopic studying of the material of hydrothermal chimneys at this field. The isotopic (d18O, d13C, and 87Sr/86Sr) and geochemical (Sr/Ca and REE) signatures indicate that, before its submarine discharging at the Lost City field, the fluid filtered through already cold altered outer zones of the Atlantis Massif and cooled via conductive heat loss. During this stage, the fluid could partly dissolve previously deposited carbonates in veins cutting serpentinite at the upper levels of the Atlantis Massif and the carbonate cement of sedimentary breccias underlying the hydrothermal chimneys. Because of this, the age of modern hydrothermal activity at the Lost City field can be much younger than 25 ka.
Resumo:
Six whole rocks from the basaltic lava series drilled in the Vavilov basin have been analyzed by 39Ar-40Ar stepwise heating method. One sample from the upper part of the Hole 655B basement gave a plateau-age at 4.3 ± 0.3 Ma whereas the other ones showed disturbed age spectra caused by alteration processes. The weighted averages of ages measured at low and intermediate temperatures on these five samples are concordant (1) one to each other and (2) with independent estimates deduced from paleontological and paleomagnetical arguments. Ages of 4.3 ± 0.3 Ma and from 3 to 2.6 Ma may represent reasonable estimates of the crystallization ages of the basaltic lava series of the Holes 655B and 651A, respectively. These ages must be taken with caution because they correspond to argon released from secondary phases characterized by low argon retention.
Resumo:
In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and 11 ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North AtIantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.
Resumo:
Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region.
Resumo:
The first step for the application of stable isotope analyses of ice wedges for the correct paleoclimatic reconstruction supposes the study of the isotopic composition of modern ice wedges and their relationship with the isotopic composition of modern precipitation. The purpose of this research is to present, to analyze and to discuss new data on isotopic composition (d18O, dD, 3H) of modern ice wedges obtained in the Laptev Sea region in 1998-99. Investigations were carried out at two sites: on Bykovsky Peninsula in 1998 and on Bol'shoy Lyakhovsky Island in 1999 and were based on the combined application of both tritium CH) and stable isotope (d18O, dD) analyses. Tritium analyses of the atmospheric precipitation collected during two field seasons show seasonal variations: high tritium concentration in snow (to a maximum of 207 TU) and low values of tritium concentration (<20 TU) in rain. High tritium concentrations are also observed in the surface water, in suprapermafrost ground waters, and in the upper part of permafrost. High tritium concentrations range between 30-40 TU and 750 TU in the studied modern ice wedges (active ice wedges), which let us believe that they are of modern growth. Such high tritium concentrations in ice wedges can not be associated with old thermonuclear tritium because of the radioactive decay. High tritium concentrations found in the snow cover in 1998/99, in the active layer and in the upper part of permafrost give evidence of modern (probably the last decade) technogenic tritium arrival from the atmosphere on to the Earth surface in the region. The comparison of the isotopic composition (d18O, dD and d-excess) of active ice wedges and modern winter precipitation in both sites shows: 1) the isotopic composition of snow correlates linearly with a slope close to 8.0 and parallel to the GMWL at both sites; 2) the mean isotopic composition of active ice wedges on Bykovsky Peninsula is in good agreement with the mean isotopic composition of modern snow; 3) the isotopic composition of active ice wedges and snow on Bol'shoy Lyakhovsky Island are considerably different. There are low values of d-excess in all studied active ice wedges (mean value is about 4.8 per mil), while in snow, the mean value of d-excess is about 9.5 per mil. Possible reasons for this gap are the following: 1) the modification of the isotopic composition in snow during the spring period; 2) changes in the isotopic composition of ice wedges due to the process of ice sublimation in open frost cracks during the cold period; 3) mixing of snowmelt water with different types of surface water during the spring period; 4) different moisture source regions.
Resumo:
Pliocene and Miocene magnetostratigraphy from ODP Site 1218 (Equatorial Pacific) has been obtained by measurements made on u-channel samples, augmented by about 50 discrete samples. U-channel samples were measured at 1 cm intervals and stepwise demagnetized in alternating fields up to a maximum peak field of 80 mT. The component magnetization directions were determined by principal component analysis for demagnetization steps in the 20-60 mT peak field range. A relatively small number of discrete samples were subject to both thermal and alternating field (AF) demagnetization and gave results compatible with u-channel measurements. Magnetostratigraphy from u-channel samples are compared with shipboard data that were based on blanket demagnetization at peak AF fields of 20 mT. U-channel measurements add more detail to the magnetostratigraphic record and allow identification of thin polarity zones especially in the upper part of the section were the sedimentation rates are very low (~2 m/Myr). The component magnetization directions determined from u-channel measurements also gave more reliable and precise estimates of inclination (paleolatitude). The magnetostratigraphy from Site 1218 can be unambiguously correlated with the reference geomagnetic polarity time scale and gives a means of dating the sedimentary sequence. Both Miocene-Pliocene and Oligocene-Miocene stage boundaries were easily identified from the magnetostratigraphic record. Although calculation of paleomagnetic poles is hindered by the low precision of the cores' azimuthal orientation, the data from both u-channel and discrete samples allow determination of the paleolatitude of the Site through time with good precision. Paleomagnetic data indicate that the paleolatitude of Site 1218 has increased form nearly equatorial latitude in the Oligocene to its present-day latitude close to 9°N. Within the precision of the paleomagnetic data, this is in agreement with current predictions of plate motion models based on fixed hotspots.
Resumo:
We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.
Resumo:
The cyclic development of anoxic conditions in the eastern Mediterranean deep sea waters is one of the most fascinating research topics in paleoceanographic studies. In combination with bottom water stagnation, enhanced primary production is a common explanation for the deposition of organic-rich layers (sapropels). This is supported by extensive evidence from both geochemical and micropaleontological studies. The correspondence of recent sapropel layers with peaks of the lower photic zone coccolithophore species Florisphaera profunda has been interpreted as a proxy for the development of a deep chlorophyll maximum (DCM), due to the pycnocline/nutricline shallowing into the lower part of the photic zone. We present millennial-scale data for coccolithophore assemblages from sediments across the most recent sapropel (S1), in the ODP Hole 964B drilled in the Ionian Sea. Relative and absolute abundances of taxa are compared with selected elemental composition of the bulk sediments. The Mn/Al and Ba/Al profiles are used to determine the original thickness of the S1 interval, and show that the upper part of S1 was affected by post-depositional oxidation of organic matter. The Nannofossil Accumulation Rate, defined by the number of coccoliths/cm**2/kyr, suggests that there is no evidence of increased productivity within most of the sapropel layer. In fact, coccolithophore production was at its minimum in the lower part. Minimum coccolith concentrations are reached despite the increase in F. profunda in both relative and absolute abundance. We suggest that the DCM deduced from the increased productivity of this species did not significantly contribute to the putative overall increased primary productivity during the deposition of most of the sapropel layer. Within the upper oxidized part of S1, coccolith accumulation was at least five times higher than in the lower part. This period of high coccolith productivity finds a counterpart in the increase of the Ba/Al ratio. The total concentration of coccoliths is again controlled by the amount of E. huxleyi, but it is also supported by concomitant increases in all the other groups, suggesting that coccolithophore productivity increased throughout the year and through the total vertical extent of the photic zone. At site 964, this is apparently the only moment when coccolithophores contributed substantially to the increased primary productivity generally assumed for the S1 layer.
Resumo:
Sedimentological and biostratigraphic investigations of 15 cores (total length: 88 m) from the vicinity of Great Meteor seamount (about 30° N, 28° W) showed that the calcareous ooze are asymmetrically distributed around the seamount and vertically differentiated into two intervals. East and west of the seampunt, the upper "A"-interval is characterized by yellowish-brown sediment colors and bioturbation; ash layers and diatoms are restricted to the eastern cores. On both seamount flanks, the sediment of the lower "B"-interval are white and very rich in CaCO3 with a major fine silt (2-16 µ) mode (mainly coccoliths). Lamination, manganese micronodules, Tertiary foraminifera and discoasters, and small limestone and basalt fragments are typical of the "B"-interval of the eastern cores only. The sediments contain abundant displaced material which was reworked from the upper parts of the seamount. The sedimentation around the seamount is strongly influenced by the kind of displaced material and the intensity of its differentiated dispersal: the sedimentation rates are generally higher on the east than on the west flank /e.g. in "B": 0.9 cm/1000 y in the W; 3.1 cm/1000 y in the E), and lower for the "A" than for the "B"-interval. The lamination is explained by the combination of increased sedimentation rates with a strong input of material poor in organic carbon producing a hostile environment for benthic life. The CaCO3 content of the core is highly influenced by the proportion of displaced bigenous carbonate material (mainly coccoliths). The genuine in-situ conditions of the dissolution facies are only reflected by the minimum CaCO3 values of the cores (CCD = about 5,500 m; first bend in dissolution curve = 4,000 m; ACD = about 3,400 m). The preservation of the total foraminiferal association depends on the proportions of in-situ versus displaced specimens. In greater water depths (stronger dissolution), for example, the preservation can be improved by the admixture of relatively well preserved displaced foraminifera. Carbonate cementation and the formation of manganese micronodules are restricted to microenvironments with locally increased organic carbon contents (e.g. pellets; foraminifera). The ash layers consist of redeposited, silicic volcanic glass of trachytic composition and Mio-Pliocene age; possibly, they can be derived from the upper part of the seamount. Siliceous organisms, especially diatoms, are frequent close to the ash layers and probably also redeposited. Their preservation was favoured by the increase of the SiO2 content in the pore water caused by the silicic volcanic glass. The cores were biostraftsraphically subdivided with the aid of planktonic foraminifera and partly alsococcoliths. In most cases, the biostratigraphically determined cold- and warm sections could be correlated from core to core. Almost all cores do not penetrate the Late Pleistocene. All Tertiary fossils are reworked. In general, the warm/cold boundary W2/C2 corresponds with the lithostratigraphic A/B boundray. Benthonic foraminifera indicate the original site deposition of the displaced material (summit plateau or flanks of the seamount). The asymmetric distribution of the sediments around the seamount east and west of the NE-directed antarctic bottom current (AABW) is explained by the distortion of the streamlines by the Coriolis force; by this process the current velocity is increased west of the seamount and decreased east of it. The different proportion of displaced material within the "A" and "B" interval is explained by changes of the intensity of the oceanic circulation. At the time of "B" the flow of the AABW around the seamount was stronger than during "A"; this can be inferred from the presence of characteristic benthonic foraminifera. The increased oceanic circulation implies an enhanced differentiation of the current velocities, and by that, also of the sedimentation rates, and intensifies the winnowed sediment material was transported downslope by turbid layers into the deep-sea, incorporated into the current system of the AABW, and asymmetrically deposited around the seamount.
Resumo:
Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stage (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic d18O signal follows obliquity with the exception of an additional, smaller d18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12°C) SST that in their climatic impact were comparable to the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes.
Resumo:
The Early Cretaceous basaltic rocks obtained from Sites 765 and 766 in the eastern Indian Ocean floor were mostly iron-rich normal mid-ocean ridge basalts (N-MORB), which were derived from a depleted mantle source having strongly light rare earth element (LREE)-depleted rare-earth patterns and a high titanium/zirconium (Ti/Zr) ratio. Basaltic rocks in the upper part of the Site 765 basement section include megacrysts and gabbroic fragments of widely varying mineral chemistry. These megacrysts range from An90 plagioclase, including highly magnesian basaltic glass coexisting with augite of Mg# (= 100 Mg/[Fe+Mg]) at 85, to An50 plagioclase coexisting with hypersthene. This varying mineralogy of megacrysts and gabbroic fragments indicates that a considerable degree of fractional crystallization took place in the magma chamber. The unusual negative correlation between incompatible elements (e.g., TiO2) and FeO*/MgO observed among Site 765 basement basalts and fresh volcanic glasses suggest source-mantle heterogeneity in terms of FeO*/MgO. Strontium isotope ratios (87Sr/86Sr) of the basaltic rocks from both sites are between 0.7027 and 0.7033 and are comparable to those of mid-Indian Ocean ridge basalts (MIORB). The basalt pebbles encountered in the sedimentary section may have been transported from the basement highs nearer the Australian continent and include basaltic compositions ranging from primitive N-MORBs to evolved enriched (E)-MORBs. Their mantle source was not as depleted as that of the basement basalts. These rocks may be the products of earlier volcanism that took place during the rifting of the Australian continent.