570 resultados para ratios financieros
Resumo:
We measured oxygen isotopes and Mg/Ca ratios in the surface-dwelling planktonic foraminifer Globigerinoides ruber (white s.s.) and the thermocline dweller Pulleniatina obliquiloculata to investigate upper ocean spatial variability in the Indo-Pacific Warm Pool (IPWP). We focused on three critical time intervals: the Last Glacial Maximum (LGM; 18-21.5 ka), the early Holocene (8-9 ka), and the late Holocene (0-2 ka). Our records from 24 stations in the South China Sea, Timor Sea, Indonesian seas, and western Pacific indicate overall dry and cool conditions in the IPWP during the LGM with a low thermal gradient between surface and thermocline waters. During the early Holocene, sea surface temperatures increased by ~3°C over the entire region, indicating intensification of the IPWP. However, in the eastern Indian Ocean (Timor Sea), the thermocline gradually shoaled from the LGM to early Holocene, reflecting intensification of the subsurface Indonesian Throughflow (ITF). Increased surface salinity in the South China Sea during the Holocene appears related to northward displacement of the monsoonal rain belt over the Asian continent together with enhanced influx of saltier Pacific surface water through the Luzon Strait and freshwater export through the Java Sea. Opening of the freshwater portal through the Java Sea in the early Holocene led to a change in the vertical structure of the ITF from surface- to thermocline-dominated flow and to substantial freshening of Timor Sea thermocline waters.
Resumo:
Hydrology, source region, and timing of precipitation are important controls on the climate of the Great Plains of North America and the composition of terrestrial ecosystems. Moisture delivered to the Great Plains varies seasonally and predominately derives from the Gulf of Mexico/Atlantic Ocean with minor contributions from the Pacific Ocean and Arctic region. For this work, we evaluate long-term relationships for the past ~ 35 million years between North American hydrology, climate, and floral change, using isotopic records and average carbon chain lengths of higher plant n-alkanes from Gulf of Mexico sediments (DSDP Site 94). We find that carbon isotope values (d13C) of n-alkanes, corrected for variations in the d13C value of atmospheric CO2, provide minor evidence for contributions of C4 plants prior to the Middle Miocene. A sharp spike in C4 input is identified during the Middle Miocene Climatic Optimum, and the influence of C4 plants steadily increased during the Late Miocene into the Pleistocene - consistent with other North American records. Chain-length distributions of n-alkanes, indicative of the composition of higher plant communities, remained remarkably constant from 33 to 4 Ma. However, a trend toward longer chain lengths occurred during the past 4 million years, concurrent with an increase in d13C values, indicating increased C4 plant influence and potentially aridity. The hydrogen isotope values (dD) of n-alkanes are relatively invariant between 33 and 9 Ma, and then become substantially more negative (75 per mil) from 9 to 2 Ma. Changes in the plant community and temperature of precipitation can solely account for the observed variations in dD from 33 to 5 Ma, but cannot account for Plio-Pleistocene dD variations and imply substantial changes in the source region of precipitation and seasonality of moisture delivery. We posit that hydrological changes were linked to tectonic and oceanographic processes including the shoaling and closure of the Panamanian Seaway, amplification of North Atlantic Deep Water Production and an associated increase of meridional winds. The southerly movement of the Intertropical Convergence Zone near 4 Ma allowed for the development of a near-modern pressure/storm track system, driving increased aridity and changes in seasonality within the North American interior.
Resumo:
The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.
Resumo:
Thirty-five samples from the drill core of the three Leg 163 sites (Sites 988, 989, and 990) off the southeast coast of Greenland were analyzed for 27 major, minor, and trace elements by X-ray fluorescence (XRF) and for 25 trace elements, including 14 rare-earth elements (REEs), by an inductively coupled plasma source mass spectrometer (ICP/MS). Sr- and Nd-isotope data are reported for seven samples and oxygen-isotope data are reported for 19 plagioclase separates. In addition, a reconnaissance survey of the composition of the main mineral phases, plagioclase, pyroxene, and oxides was determined on an electron microprobe to provide the basic information required for petrogenetic modeling. Olivine pseudomorphs are present in many of the samples, but in no case was an olivine grain found that was fresh enough to give a reliable analysis. The chemical and isotopic data recorded here were determined to provide a comparison with the larger data sets acquired by the Edinburgh, Copenhagen, and Leicester laboratories from both Legs 152 and 163 drill cores. This will permit a detailed comparison of the North Atlantic flood basalt province as a whole with the better known Columbia River, Deccan, and Karoo continental flood basalt provinces, for which substantial chemical data sets are already available at Washington State University.
Resumo:
Strontium isotopic ratios of gypsums recovered from upper Miocene (Messinian) evaporites at ODP Leg 107 Holes 652A, 653B, and 654A (Tyrrhenian Sea) are lower than expected. The values for the Messinian balatino-like gypsum, single gypsum crystals, and anhydrites range from 0.70861 to 0.70886 and are approximately 25 * 10**-5 less than would be expected for evaporites precipitated from Messinian seawater (0.70891-0.70902). Pre-evaporitic planktonic foraminifers from Hole 654A show variable degrees of dolomitization and 87Sr/86Sr values that irregularly decrease upward from normal marine values approximately 81m below the lowest evaporite occurrence. This suggests diagenetic alteration by advecting interstitial water with a low 87Sr/86Sr ratio or that the lower Sr isotopic ratios for the Messinian evaporites could have resulted from a greater influence of fresh water on the Sr isotopic composition of the desiccating Tyrrhenian Sea. Fluctuations of the 87Sr/86Sr-ratio for evaporites in the sedimentary cycles recognized for Holes 653B and 654A, the generally low Sr isotopic ratio of river water entering the Mediterranean Sea, and the presence of dwarf marine microfossils suggest that the 87Sr/86Sr ratio of the evaporites responded to hydrologic variations in a very restricted basin with variable rates of marine and fresh water input. The strontium isotopic ratios of the Messinian anhydrites from the proposed lacustrine sequence at Hole 652A fall in the same range as the marine evaporites from Holes 654A and 653B. This suggests a common or similar origin of the brines at the three locations. The complex depositional and hydrologic conditions in the Mediterranean during the Messinian salinity crisis preclude the use of Sr isotopic values from the evaporites for stratigraphic correlation and dating. They are, however, very useful in the interpretation of the depositional history of the basin. General calculations assuming a closed system suggest that the 87Sr/86Sr ratio of Messinian seawater (-0.7090) could be reduced to that of the evaporites (-0.7087) by mixing with fresh water (e.g., Nile River) in times of 10**4 to 10**5 yr.