257 resultados para magma
Resumo:
Variations in crystal morphologies in pillow basalts and probable sheet flows sampled from the region of the East Pacific Rise drilled during Leg 54 are related both to differences in composition and to an extreme range of cooling rate experienced upon extrusion. The basalts range in composition from olivine-rich tholeiites to tholeiitic ferrobasalts, and include some more alkaline basalts. The kinetics of crystal growth in some samples appears to have been influenced by the amount of initial superheating (or supercooling) of the magma, or possibly by differential retention of volatiles. Olivine in quartznormative ferrobasalts apparently formed metastably at high undercooling. Despite these effects, reliable petrographic criteria are established to distinguish the principal rock types described regardless of the crystallinity and grain size. Microphenocrysts formed prior to pillow formation correspond closely to mineral assemblages inferred from normative plots and variation diagrams to control crystal fractionation at various stages. The details of spherulitic and dendritic growth also provide some clues about composition. Petrographic evidence for magma mixing is scant. Only some Siqueiros fracture zone basalts contain zoned plagioclase phenocrysts with glass inclusions similar to those used to infer mixing among Mid-Atlantic Ridge basalts. All basalts from the summit and flanks of the East Pacific Rise are aphyric. One possible petrographic consequence of mixing between olivine tholeiites and ferrobasalts - formation of clinopyroxene phenocrysts - is not evident in any fracture zone or Rise crest basalt. Highly evolved ferrobasalts with liquidus low-Ca clinopyroxene have not been sampled, nor does textural evidence indicate that any basalts sampled are hybrid compositions between such magmas and less fractionated compositions. Evidently the sampled ferrobasalts are close to the most evolved compositions that occur in any abundance on this portion of the East Pacific Rise.
Resumo:
The principal objective of Leg 187 was to locate the Indian/Pacific mantle boundary by sampling and analyzing 8- to 28-Ma seafloor basalts to the north of the Australian Antarctic Discordance (AAD). In this paper we present Sr and Nd isotopic data from basaltic glasses recovered from the 13 sites drilled during Leg 187. Our data show that the boundary region is characterized by a gradual east-west increase in 87Sr/86Sr, with a corresponding decrease in 143Nd/144Nd across a 150-km-wide zone located east and west of the 127°E Fracture Zone. The Sr-Nd isotopic composition of glasses therefore confirms the general conclusions derived by the Leg 187 shipboard scientific party in that the mantle boundary follows a west-pointing, V-shaped depth anomaly that stretches across the ocean floor from the Australian to the Antarctic continental margins. We document that two systematic trends of covariation between 87Sr/86Sr and 143Nd/144Nd can be distinguished, suggesting that the basalts sampled during Leg 187 formed through the interaction of three contrasting source components: (1) a component that lies within the broad spectrum of Indian-type mantle compositions, (2) a boundary component, and (3) a Pacific-type mantle component. The variations in elemental and isotopic compositions indicate that the boundary component represents a distinct mantle region that is associated with the boundary between the Pacific and the Indian mid-ocean-ridge basalt (MORB) sources rather than a dispersed mantle heterogeneity that was preferentially extracted in the boundary region. However, the origin of the boundary component remains an open question. The three components are not randomly intermixed. The Indian and the Pacific mantle sources both interacted with the boundary component, but they seem not to have interacted directly with each other. Large local variability in isotopic compositions of lavas from the mantle boundary region demonstrates that magma extraction processes were unable to homogenize the isotopic contrasts present in the mantle source in this region. Systematic variations in rare earth element (REE) concentrations across the depth anomaly cannot be explained solely by variations in source composition. The observed variations may be explained by an eastward increase and westward decrease in the degree of melting toward the mantle boundary region, compatible with a cooling of the Pacific mantle and a heating of the Indian mantle toward the mantle boundary.
Resumo:
IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions. It is apparent that few of the recovered basalts have the geochemical characteristics of typical "depleted" midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge. Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb, 87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in "MORB". The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an "enriched" and a "depleted" source, but rather a range of sources heterogeneous on different scales for different elements - to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.
Resumo:
This study presents a systematic analysis and interpretation of autonomous underwater vehicle-based microbathymetry combined with remotely operated vehicle (ROV) video recordings, rock analyses and temperaturemeasurements within the PACManus hydrothermal area located on Pual Ridge in the Bismarck Sea of eastern Manus Basin. The data obtained during research cruise Magellan-06 and So-216 provides a framework for understanding the relationship between the volcanism, tectonismand hydrothermal activity. PACManus is a submarine felsic vocanically-hosted hydrothermal area that hosts multiple vent fields locatedwithin several hundredmeters of one another but with different fluid chemistries, vent temperatures and morphologies. The total area of hydrothermal activity is estimated to be 20,279m**2. Themicrobathymetrymaps combinedwith the ROV video observations allow for precise high-resolution mapping estimates of the areal extents of hydrothermal activity.We find the distribution of hydrothermal fields in the PACManus area is primarily controlled by volcanic features that include lava domes, thick andmassive blocky lava flows, breccias and feeder dykes. Spatial variation in the permeability of local volcanic facies appears to control the distribution of venting within a field.We define a three-stage chronological sequence for the volcanic evolution of the PACManus based on lava flow morphology, sediment cover and lava SiO2 concentration. In Stage-1, sparsely to moderately porphyritic dacite lavas (68-69.8 wt.% SiO2) erupted to form domes or cryptodomes. In Stage-2, aphyric lava with slightly lower SiO2 concentrations (67.2-67.9 wt.% SiO2) formed jumbled and pillowed lava flows. In the most recent phase Stage-3, massive blocky lavaswith 69 to 72.5wt.% SiO2were erupted throughmultiple vents constructing a volcanic ridge identified as the PACManus neovolcanic zone. The transition between these stages may be gradual and related to progressive heating of a silicic magma following a recharge event of hot, mantle-derived melts.
Resumo:
Volcanogenic rocks from the Sea of Okhotsk are divided into seven age complexes: Late Jurassic, Early Cretaceous, Late Cretaceous, Eocene, Late Oligocene, Late Miocene, and Pliocene-Pleistocene. All these complexes are united into two groups - Late Mesozoic and Cenozoic. Each group reflects a certain stage of development of the Sea of Okhotsk region. Late Mesozoic volcanites build the geological basement of the Sea of Okhotsk, and their petrochemical features are similar to those of the volcanic rocks from the Okhotsk-Chukotka Volcanogen. Pliocene-Pleistocene volcanites reflect stages of tectono-magmatic activity; the latter destroyed the continental margin and produced riftogenic troughs. Geochemical features of volcanites from the Sea of Okhotsk indicate influence of the sialic crust on magma formation and testify formation of the Okhotsk Sea Basin on the destructive margin of the Asian continent.
Resumo:
The solubility of Re and Au in haplobasaltic melt has been investigated at 1673-2573 K, 0.1 MPa-2 GPa and IW-1 to +2.5, in both carbon-saturated and carbon-free systems. Results extend the existing, low pressure and temperature, dataset to more accurately predict the results of metal-silicate equilibrium at the base of a terrestrial magma ocean. Solubilities in run-product glasses were measured by laser ablation ICP-MS, which allows for the explicit assessment of contamination by metal inclusions. The Re and Au content of demonstrably contaminant-free glasses increases with temperature, and shows variation with oxygen fugacity (fO2) similar to previous results, although lower valence states for Re (1+, 2+) are suggested by the data. At 2 GPa, and Delta IW of +1.75 to +2, the metal-silicate partition coefficient for Re (DMet/Sil) is defined by the relation LogD[met/sil][Re] = 0.50(±0.022)*10**4/T(K)+3.73(±0.095) For metal-silicate equilibrium to endow Earth's mantle with the observed time-integrated chondritic Re/Os, (and hence 187Os/188Os), DMet/Sil for both elements must converge to a common value. Combined with previously measured DMet/Sil for Os, the estimated temperature at which this convergence occurs is 4500 (±900) K. At this temperature, however, the Re and Os content of the equilibrated silicate is ~100-fold too low to explain mantle abundances. In the same experiments, much lower Dmet/sil values have been determined for Au, and require the metal-silicate equilibration temperature to be <3200 K, as hotter conditions result in an excess of Au in the mantle. Thus, the large disparity in partitioning between Re or Os, and Au at core-forming temperatures argues against their mantle concentrations set solely by metal-silicate equilibrium at the base of a terrestrial magma ocean.
Resumo:
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40-60 m.y.), the Palau-Kyushu Ridge (29-44 m.y.) and the Parece Vela and Shikoku basins (17-30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr = 0.7026 - 0.7032, 143Nd/144Nd = 0.51300 - 0.51315, and 206Pb/204Pb = 17.8 - 18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr = 0.7038 - 0.7040, 143Nd/144Nd = 0.51285 - 0.51291 and 206Pb/204Pb = 18.8 - 19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have delta207Pb values of 0 to +6 and delta208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr = 7032 - 0.7035, 143Nd/144Nd = 0.51308 - 0.51310 and 206Pb/204Pb = 18.4 - 18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc. At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 (Hart, 1988, doi:10.1016/0012-821X(88)90131-8)) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 (Hart, 1988)). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb (Hart, 1988)). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.
Resumo:
Basalts drilled from the East Pacific Rise, OCP Ridge, and Siqueiros fracture zone during Leg 54 are texturally diverse. Dolerites are equigranular at Sites 422 and 428 and porphyritic, with phenocrysts of plagioclase (An69.73) and Ca-rich clinopyroxene (Ca42Mg48Fe10) at Site 427. The East Pacific Rise lavas and some of those from the OCP Ridge are fine-grained and porphyritic. The majority of the large crystals are clustered skeletal glomerocrysts of plagioclase An64-77), together with olivine (Fo80-87), Ca-rich clinopyroxene, or both. Euhedral phenocrysts of plagioclase, together with olivine, Carich clinopyroxene, and Cr-Al spinel in some cases, occur in most of the fine-grained lavas. These phenocrysts are small (maximum dimension <1 mm in all but one sample), sparse (combined modal amount <1% in all samples), and distinctive from the megacrysts which characterize many ocean-floor lavas. In two East Pacific Rise lavas, zoned plagioclase (An83 cores) is the sole phenocryst phase. In other porphyritic lavas from all the main East Pacific Rise and OCP Ridge units drilled during Leg 54, the plagioclase phenocrysts contain cores of bytownite (An79-87) surrounded by more-sodic feldspar (An67-77). Core/rim relationships vary from continuous normal zoning, through discontinuous zoning, to extensive resorption of the calcic cores in some samples. The compositions of the plagioclase calcic cores are systematically related to those of the glomerophyric plagioclase and olivine in the lavas containing them. Furthermore, only one compositional population of calcic cores occurs in each rock. The possible causes of these relationships are far from clear. Magma mixing, although superficially applicable, is inconsistent with important aspects of the phenocryst mineralogy of these particular lavas. A more satisfactory model to explain both phenocryst zoning and rapid glomerocryst growth immediately before extrusion may be constructed by postulating influx of water into the upwelling magmas within Layer 3 of the oceanic crust beneath the East Pacific Rise, and subsequent loss of part of this water during effervescence within feeder dykes between Layer 3 and the ocean floor. It is shown that this model is fully consistent with published data on water and carbon dioxide contents and ratios in the pillow-margin glasses, vesicles, and phenocryst inclusions of ocean-floor basalts. The evidence for the precipitation of plagioclase- dominated crystalline assemblages from these magmas in the upper part of Layer 3 is concordant with recent geophysically based modeling of the structure of the East Pacific Rise. Calcium-rich clinopyroxenes in dolerites from the OCP Ridge and Siqueiros fracture zone show radial, oscillatory, and sector-zoning. In Sample 428A-5-2 (Piece 5a), the compositional trends resulting from this zoning closely resemble those of the pyroxenes in some lunar lavas. The controls on crystallization of interstitial pigeonite - epitaxial upon augite - in this rock are discussed. Both sector-zoning of the augite and nucleation of pigeonite within microvolumes of magma with a low Ca(Mg + Fe) ratio appear to be important factors.
Resumo:
This study reports the first crystal chemical database resulting from a detailed structural investigation of trioctahedral micas found in xenolithic ejecta produced during the AD 1631, 1872 and 1944 eruptions, three explosive episodes of recent volcanic period of Vesuvius volcano (Southern Italy). Three xenolith types were selected: metamorphic/metasomatic skarns, pyrometamorphic/hydrothermally altered nodules and mafic cumulates. They are related to different magma chemistry and effusive styles: from sub-plinian and most evolved (AD 1631 eruption) to violent strombolian with medium evolution degree (AD 1872 eruption) to vulcanian-effusive, least evolved (AD 1944 eruption) event, respectively. Both xenoliths and micas were investigated employing multiple techniques: the xenoliths were characterized by X-ray fluorescence, inductively-coupled plasma-mass spectrometry, optical microscopy, X-ray powder diffraction, and quantitative energy-dispersive microanalysis; the micas were studied by electron probe microanalysis and single crystal X-ray diffraction. The mica-bearing xenoliths show variable texture and mineralogical assemblage, clearly related to their different origin. Based on the major oxide chemistry, only one xenolithic sample falls in the skarn compositional field from the Somma-Vesuvius literature, some fall close to the skarns and cumulate fields, others plot close to the syenite/foidolite/essexite field. A subgroup of the selected ejecta does not fall or approach any of the compositional fields. Trace and rare earth element patterns show some petrological affinity between studied xenoliths and erupted magmas with typical Eu, Ta and Nb negative anomalies. Strongly depleted patterns were detected for the 1631 metamorphic/metasomatic skarns xenoliths. Three distinct mica groups were distinguished: 1) Mg-, Al-rich, low Ti-bearing, low to moderate F-bearing varieties (1631 xenolith), 2) Al-moderate, F- and Mg-rich, Ti-, Fe-poor varieties (1872 xenolith), and 3) Al-, Ti- and Fe-rich, F-poor phases (1944 xenolith). All the analysed mica crystals are 1M polytypes with the expected space group C2/m. Micas from xenoliths of the 1631 Vesuvius eruption are phlogopites characterized by a combination of low extent of oxy-type and variable extent OH-F-substitutions, as testified by the range of F concentration (from ~ 0.20 to 0.80 apfu). Micas from xenoliths of the 1872 Vesuvius eruption exhibit structural peculiarities typical of fluorophlogopites, i.e. OH-F-substitution is predominant. Micas from the xenolith of the 1944 Vesuvius eruption display features typical of oxy-substituted micas. The variability of the crystal chemical features of the studied micas are consistent with the remarkable variation of their host rocks. Micas from 1631 nodules are related to metasomatic, skarn-type environment, deriving from the metamorphosed wall-rocks hosting the magma reservoir. The fluorophlogopites from the 1872 xenoliths testify for strongly dehydrated environmental conditions compared to those of the 1631 and 1944 hosts. Finally, magma storage condition at depth, associated to a decreasing aH2O may have promoted major oxy-type substitutions in 1944 biotites.
Resumo:
Experimental phase relations were used to assess the role of volatiles and crustal level fractional crystallization in the petrogenesis of lavas from Hole 839B in the central Lau Basin. Melting experiments were performed on Sample 135-839B-15R-2, 63-67 cm, at 1 atm, anhydrous, and 2 kbar, H2O-saturated (~6 wt% H2O in the melt) to determine the influence of variable pressure and H2O content on phase appearances, mineral chemistry, and liquid line of descent followed during crystallization. The effects of H2O are to depress the liquidus by ~100°C, and to suppress crystallization of plagioclase and orthopyroxene relative to olivine and high-Ca clinopyroxene. At 1 atm, anhydrous, olivine and plagioclase coexist near the liquidus, whereas orthopyroxene and then clinopyroxene appear with decreasing temperature. Crystallization of 50 wt% produces a residual liquid that is rich in FeO* (10.8 wt%) and poor in Al2O3 (13.6 wt%). At 2 kbar, H2O-saturated, the liquidus phases are olivine and chromian spinel, with high-Ca clinopyroxene appearing after ~10% crystallization. Plagioclase saturation is suppressed until ~20% crystallization has occurred. The residual liquid from 35 wt% crystallization is rich in AI2O3 (17.4 wt%), and poor in MgO (4.82 wt%); it contains moderate FeO* (8.2 wt%), and resembles the low-MgO andesites recovered from Hole 839B. On the basis of these experiments we conclude that the primitive lavas recovered from Hole 839B have experienced crystallization along the Ol + Cpx saturation boundary, under hydrous conditions (an ankaramitic liquid line of descent), and variable amounts of olivine and chromian spinel accumulation. The low-MgO andesites from Hole 839B are the products of hydrous fractional crystallization, at crustal pressures, of a parent magma similar to basaltic andesite Sample 135-839B-15R-2, 63-67 cm.