183 resultados para ice skating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Greenland Ice Sheet Project 2 (GISP2) core can enhance our understanding of the relationship between parameters measured in the ice in central Greenland and variability in the ocean, atmosphere, and cryosphere of the North Atlantic Ocean and adjacent land masses. Seasonal (summer, winter) to annual responses of dD and deuterium excess isotopic signals in the GISP2 core to the seesaw in winter temperatures between West Greenland and northern Europe from A.D. 1840 to 1970 are investigated. This seesaw represents extreme modes of the North Atlantic Oscillation, which also influences sea surface temperatures (SSTs), atmospheric pressures, geostrophic wind strength, and sea ice extents beyond the winter season. Temperature excursions inferred from the dD record during seesaw/extreme NAO mode years move in the same direction as the West Greenland side of the seesaw. Symmetry with the West Greenland side of the seesaw suggests a possible mechanism for damping in the ice core record of the lowest decadal temperatures experienced in Europe from A.D. 1500 to 1700. Seasonal and annual deuterium excess excursions during seesaw years show negative correlation with dD. This suggests an isotopic response to a SST/ land temperature seesaw. The isotopic record from GISP2 may therefore give information on both ice sheet and sea surface temperature variability. Cross-plots of dD and d show a tendency for data to be grouped according to the prevailing mode of the seesaw, but do not provide unambiguous identification of individual seesaw years. A combination of ice core and tree ring data sets may allow more confident identification of GA and GB (extreme NAO mode) years prior to 1840.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sr and Nd isotopic composition of dust extracted from recent snow layers at the top of Berkner Island ice sheet (located within the Filchner-Ronne Ice Shelf at the southern end of the Weddell Sea) enables us, for the first time, to document dust provenance in Antarctica outside the East Antarctic Plateau (EAP) where all previous studies based on isotopic fingerprinting were carried out. Berkner dust displays an overall crust-like isotopic signature, characterized by more radiogenic 87Sr/86Sr and much less radiogenic 143Nd/144Nd compared to dust deposited on the EAP during glacial periods. Differences with EAP interglacial dust are not as marked but still significant, indicating that present-day Berkner dust provenance is distinct, at least to some extent, from that of the dust reaching the EAP. The fourteen snow-pit sub-seasonal samples that were obtained span a two-year period (2002-2003) and their dust Sr and Nd isotopic composition reveals that multiple sources are at play over a yearly time period. Southern South America, Patagonia in particular, likely accounts for part of the observed spring/summer dust deposition maxima, when isotopic composition is shifted towards 'younger' isotopic signatures. In the spring, possible additional inputs from Australian sources would also be supported by the data. Most of the year, however, the measured isotopic signatures would be best explained by a sustained background supply from putative local sources in East Antarctica, which carry old-crust-like isotopic fingerprints. Whether the restricted East Antarctic ice-free areas produce sufficient eolian material has yet to be substantiated however. The fact that large (> 5 µm) particles represent a significant fraction of the samples throughout the entire time-series supports scenarios that involve contributions from proximal sources, either in Patagonia and/or Antarctica (possibly including snow-free areas in the Antarctic Peninsula and other areas as well). This also indicates that additional dust transport, which does not reach the EAP, must occur at low-tropospheric levels to this coastal sector of Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attenuation property of a lateral propagating light (LPL) in sea ice was measured using an artificial lamp in the Canadian Arctic during the 2007/2008 winter. A measurement method is proposed and applied whereby a recording instrument is buried in the sea ice and an artificial lamp is moved across the instrument. The apparent attenuation coefficient µ(lamda) for the lateral propagating light is obtained from the measured logarithmic relative variation rate. With the exception of blue and red lights, the attenuation coefficient changed little with wavelength, but changed considerably with depth. The vertical decrease of the attenuation coefficient was found to be correlated with salinity: the greater the salinity, the greater the attenuation coefficient. A clear linear relation of salinity and the lateral attenuation coefficient with R2 = 0.939 exists to address the close correlation of the attenuation of LPL with the scattering from the brine. The observed attenuation coefficient of LPL is much larger than that of the vertical propagation light, which we speculate to be caused by scattering. Part of this scattered component is transmitted out of the sea ice from the upper and lower surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North Water (NOW) Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada) at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1) sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS)) and (2) thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison with MODIS data (thin-ice thickness < 20 cm) shows that the wintertime polynya area estimates derived by MODIS are about 30 to 40% higher than those derived using the polynya signature simulation method (PSSM) with AMSR-E data. In turn, the difference in polynya area between PSSM and a sea ice concentration (SIC) threshold of 70% is fairly low (approximately 10%) when applied to AMSR-E data. For the coarse-resolution SSM/I-SSMIS data, this difference is much larger, particularly in November and December. Instead of a sea ice concentration threshold, the PSSM method should be used for SSM/I-SSMIS data. Depending on the type of cloud-cover correction, the calculated ice production based on MODIS data reaches an average value of 264.4 ± 65.1 km**3 to 275.7 ± 67.4 km**3 (2002/2003 to 2014/2015) and shows a high interannual variability. Our achieved long-term results underline the major importance of the NOW polynya considering its influence on Arctic ice production and associated atmosphere/ocean processes.