250 resultados para cog humanoid robot embodied learning phd thesis metaphor pancake reaching vision
Resumo:
hyDRaCAT Spectral Reflectance Library for tundra provides the surface reflectance data and the bidirectional reflectance distribution function (BRDF) of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites. The aim of this dataset is the hyperspectral and spectro-directional reflectance characterization as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. The spectroscopic and field spectro-goniometric measurements were undertaken on the YAMAL2011 expedition of representative Siberian vegetation fields and on the North American Arctic Transect NAAT2012 expedition of Alaskan vegetation fields both belonging to the Greening-of-the-Arctic (GOA) program. For the field spectroscopy each 100 m2 vegetation study grid was divided into quadrats of 1 × 1 m. The averaged reflectance of all quadrats represents the spectral reflectance at the scale of the whole grid at the 10 × 10 m scale. For the surface radiometric measurements two GER1500 portable field spectroradiometers (Spectra Vista Corporation, Poughkeepsie, NY, USA) were used. The GER1500 measures radiance across the wavelength range of 350-1,050 nm, with sampling intervals of 1.5 nm and a radiance accuracy of 1.2 × 10**-1 W/cm**2/nm/sr. In order to increase the signal-to-noise ratio, 32 individual measurements were averaged per one target scan. To minimize variations in the target reflectance due to sun zenith angle changes, all measurements at one study location have been performed under similar sun zenith angles and during clear-sky conditions. The field spectrometer measurements were carried out with a GER1500 UV-VIS spectrometer The spectrogoniometer measurements were carried out with a self-designed spectro-goniometer: the Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS, patent publication number: DE 10 2011 117 713.A1). The ManTIS was equipped with the GER1500 spectrometer allowing spectro-directional measurements with up to 30° viewing zenith angle by full 360° viewing azimuth angles. Measurements in central Yamal (Siberia) at the research site 'Vaskiny Dachi' were carried out in the late summer phenological state from August 12 2011 to August 28 2011. All measurements in Alaska along the North South transect on the North Slope were taken between 29 June and 11 July 2012, ensuring that the vegetation was in the same phenological state near peak growing season.
Resumo:
Glacially deformed pieces of wood, organic lake sediments and clasts of reworked peat have been collected in front of Alpine glaciers since AD 1990. The palaeoglaciological interpretation of these organic materials is related to earlier phases of glacier recession surpassing that of today's shrunken glaciers and to tree growth and peat accumulation in the valleys now occupied by the glaciers. Glacial transport of the material is indicated by wood anatomy, incorporated silt, sand and gravel particles, missing bark and deformed treerings. A total of 65 samples have been radiocarbon dated so far, and clusters of dates provide evidence of eight phases of glacier recession: 9910-9550, 9010-7980, 7250-6500, 6170-5950, 5290-3870, 3640-3360, 2740-2620 and 1530-1170 calibrated years BP. Allowing for the timelag between climatic fluctuations, glacier response and vegetation colonization, these recession phases may lag behind climatic changes by 100-200 years.
Resumo:
The knowledge of ice sheet surface topography and the location of the ice divides are essential for ice dynamic modeling. An improved digital elevation model (DEM) of Dronning Maud Land (DML), Antarctica, is presented in this paper. It is based on ground-based kinematic GPS profiles, airborne radar altimetry, and data of the airborne radio-echo sounding system, as well as spaceborne laser altimetry from NASA's Ice, Cloud and land Elevation Satellite (ICESat). The accuracy of ICESat ice sheet altimetry data in the area of investigation is discussed. The location of the ice divides is derived from aspect calculation of the topography and is verified with several velocity data derived from repeated static GPS measurements.
Resumo:
The dataset is based on a long-term study (38 years) at the Galata transect and covers the spring-summer periods from 1967 till 2005. The whole dataset is composed of 360 data of total zooplankton biomass and abundance . Samples were collected in discrete layers 0-10m, 10-20m, 10-25m, 25-50m, 50-70m, 50-100m, 100-150. Mesozooplankton abundance: the collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Fishery Resource by Prof. Asen Konsulov and Institute of Oceanology by Prof. Asen Konsulov, Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Fishery Resource by prof. Asen Konsulov and Institute of Oceanology by Prof. Asen Konsulov, Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).