487 resultados para Zircon geochronology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentary cover on the bottom of the Northwest Atlantic Ocean is underlain by Late Jurassic - Cretaceous tholeiite-basalt formation. It consists of come sedimentary formations with different lithologic features and age. Their composition, stratigraphic position and, distribution are described on materials of deep-sea drilling. Mineralogical and geochemical studies of DSDP Leg 43 and Leg 44 holes lead to new ideas about composition and genesis of some sediment types of and their associations. High metal contents in the chalk formation of black clays on the Bermuda Rise probably result from exhalations. Connection of red-colored and speckled deposits with hiatuses in sedimentation is shown. Main stages of geological history of the North American Basin are reflected in accumulation of the followed formations: ancient carbonate formation (Late Jurassic - Early Cretaceous), formation of black clays rich in organic matter (Cretaceous), formation of speckled clays (Late Cretaceous), siliceous-clayey turbidite formation (Eocene), hemipelagic and pelagic clayey formation (Neogene), and terrigenous turbidite formation (Pleistocene).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive high-grade polydeformed metamorphic provinces surrounding Archaean cratonic nuclei in the East Antarctic Shield record two tectono-thermal episodes in late Mesoproterozoic and late Neoproterozoic-Cambrian times. In Western Dronning Maud Land, the high-grade Mesoproterozoic Maud Belt is juxtaposed against the Archaean Grunehogna Province and has traditionally been interpreted as a Grenvillian mobile belt that was thermally overprinted during the Early Palaeozoic. Integration of new U-Pb sensitive high-resolution ion microprobe and conventional single zircon and monazite age data, and Ar-Ar data on hornblende and biotite, with thermobarometric calculations on rocks from the H.U. Sverdrupfjella, northern Maud Belt, resulted in a more complex P-T-t evolution than previously assumed. A c. 540?Ma monazite, hosted by an upper ampibolite-facies mineral assemblage defining a regionally dominant top-to-NW shear fabric, provides strong evidence for the penetrative deformation in the area being of Pan-African age and not of Grenvillian age as previously reported. Relics of an eclogite-facies garnet-omphacite assemblage within strain-protected mafic boudins indicate that the peak metamorphic conditions recorded by most rocks in the area (T = 687-758°C, P = 9·4-11·3?kbar) were attained subsequent to decompression from P > 12·9?kbar. By analogy with limited U-Pb single zircon age data and on circumstantial textural grounds, this earlier eclogite-facies metamorphism is ascribed to subduction and accretion around 565?Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions is ascribed to the intrusion of post-orogenic granite at c. 480?Ma. The recognition of extensive Pan-African tectonism in the Maud Belt casts doubts on previous Rodinia reconstructions, in which this belt takes a pivotal position between East Antarctica, the Kalahari Craton and Laurentia. Evidence of late Mesoproterozoic high-grade metamorphism during the formation of the Maud Belt exists in the form of c. 1035?Ma zircon overgrowths that are probably related to relics of granulite-facies metamorphism recorded from other parts of the Maud Belt. The polymetamorphic rocks are largely derived from a c. 1140?Ma volcanic arc and 1072 ± 10?Ma granite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform d18O with an average value of 5.2 ± 0.5 per mil (2SD). The average d18O(Zrc) would be in magmatic equilibrium with unaltered MORB [d18O(WR) ~5.6-5.7 per mil], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured d18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like d18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith d18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated d18O (6.0-7.5 per mil), but such values have not been identified in any zircons from the large sample suite examined here. The difference in d18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypabyssal rocks of the Omgon Range, Western Kamchatka that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5-63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. Early Paleocene age of ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. Ilmenite and titanomagnetite gabbro-dolerites were produced by multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and contamination of these melts with rhyolitic melts of different compositions. Moderate- and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. Biotite granites and granite aplites were produced by combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from Late Cretaceous throughout Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil') continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of a lithological study of bottom sediments in the Syrian region of the Mediterranean Sea during Cruise 27 of R/V Vityaz (1993) are reported. Suspended sediment discharge of the Nile River are of the greatest importance for terrigenous sedimentation in the SE part of the Mediterranean Sea, especially in deep-sea areas. Suspended load entering from the Syrian catchment area plays an important role in formation of recent shelf and slope deposits. Supply of aerosols from Syrian and Arabian deserts was distinguished by the patchiness of surface distribution of quartz. During Late Quaternary accumulation of terrigenous material supplied from both the Syrian and the Nile drainage areas was irregular. Sedimentation was remarkably enhanced during sapropel formation 7000-9000 years BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the GEISHA expedition (Geologische Expedition in die Shackleton Range 1987/88), the Pioneers Escarpment was visited and sampled extensively for the first time. Most of the rock types encountered represent amphibolite facies metamorphics, but evidence for granulite facies conditions was found in cores of garnet. These conditions must have been at least partly reached during the peak of metamorphism. For the Pioneers Escarpment a varicolored succession of sedimentary and bimodal volcanic origin is typical. It comprises: quartzites muscovite quartzite, sericite quartzite, fuchsite quartzite, garnet-quartz schists etc.; pelites: mica schists and plagioclase or plagioclase-microcline gneisses, aluminous schists; marls and carbonates: grey meta-limestones, carbonaceous quartzites, but also pure white, often fine-grained, saccharoidal marble, or a variety of tremolite marble, olivine (forsterite) marble, diopside-clinopyroxene-tremolite marble, etc.; basic volcanic rocks: amphibole fels, amphibolite schist, garnet amphibolite, and acidic to intermediate volcanic rocks: garnet-biotite schist, epidote-biotite-plagioclase gneiss, microcline gneiss. These rocks are considered to be a supracrustal unit, called the Pioneers Group. In the easternmost parts of the Pioneers Escarpment, e.g. at Vindberget, nonmetamorphic shales, sandstones and greywackes crop out, which are cover rocks of possibly Jurassic age. These metasediments, which represent a quartz-pelite-carbonate (QPC) association, indicate that deposition took place on a stable shelf, i.e. on the submerged rim of a craton. Marine shallow-water sedimentation including marls and aluminous clays form the protoliths. The volcanics may be part of a bimodal volcanics-arkose-conglomerate (BVAC) association. Geochemical analyses support the assumption of volcanic protoliths. This is demonstrated especially by the elevated amounts of the immobile, incompatible high-field-strength elements (HFSE) Nb, Ta, Ti, Y, and Zr encountered in some of the gneisses. Microscopic investigation suggests the existence of ortho-amphibolites. This is confirmed by the geochemistry. A bimodal volcanic association is evident. The amphibolites plot in both the tholeiite and calc-alkaline fields. The acidic volcanics are mainly rhyolitic. The sediments and volcanics were subjected to conditions of 10-11 kbar and 600°C during the peak of metamorphism, i.e. granulite facies metamorphism, which can be deduced from the Fe mole ratios of 0.71-0.73 in the garnet cores. Due to the relatively low temperatures, no anatectic melting took placc. The rims of the garnets show a Fe mole ratio of 0.84-0.86, and the coexisting mineral association garnet-biotite-staurolite-kyanite indicate amphibolite facies. The thermobarometry shows P-T conditions of 5-6 kbar and 570-580°C for this stage. The metamorphic history indicates deep burial at depths down to 35 km (subduction?) i.e. high pressure metamorphism, followed by pressure release due to uplift associated with retrograde metamorphism. This may have happened during a pre-Ross metamorphic event or orogeny. The Ross Orogeny at about 500 Ma probably just led to the weak greenschist facies overprint that is evident in the rocks of the Pioneers Group. Finally, sedimentation resumed in the area of the present Shackleton Range, or at least in the eastern part of the Pioneers Escarpment, probably when detritus from erosion of the basement (Read Group and Pioneers Group) was deposited, forming sandstones and greywackes of possibly Jurassic age. There is no indication that these sediments belong to the former Turnpike Bluff Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New geological and geophysical data on the Amirante Arc, which locates to the south of the Seychelles Islands, are presented. These data were obtained by Pacific Oceanological Institute during the 33-rd cruise of R/V Professor Bogorov in 1990. The Amirante Arc represents a seamount chain, which has submeridional strike and total length about 400 km. To the west of the Amirante Arc there are a deep sea trench and a back-arc basin, i.e. this area is characterized by structural elements associated with the subduction zone of Western Pacific type. According to our data the Amirante Arc is composed by tholeiites of ocean plateau type. This facts are evidences that the Amirante Arc differs from typical Pacific island arcs. This gives an opportunity to distinguish a special type of oceanic structures, i.e. non-volcanic (amagmatic) ridges. The Amirante Ridge has been probably formed as a result of oceanic crust heaping due to horizontal displacements of its blocks in the process of spreding ridge formation in the Indian Ocean during Cretaceous-Paleogene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

40Ar-39Ar incremental heating experiments and electron microprobe analyses were performed on basaltic rocks recovered from Site 1001 during Ocean Drilling Program Leg 165. The lower Nicaraguan Rise, on which Site 1001 lies, appears to be part of a larger Caribbean oceanic plateau that makes up the core of the Caribbean plate. Our results indicate an eruption age of 81 ± 1 Ma. A single flow-rim glass is tholeiitic and almost identical to the shipboard X-ray fluorescence analyses of the whole rock. The slightly porphyritic basalts have at least two populations of plagioclase, groundmass, and glomerocrystic plagioclase laths that appear to be in equilibrium with the surrounding melt and corroded tabular phenocrysts that have a higher An content (An84-86).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase relations of natural volcaniclastic sediments from the west Pacific Ocean were investigated experimentally at conditions of 3-6 GPa and 800-900 °C with 10 wt.% added H2O (in addition to ~ 10 wt.% structurally-bound H2O) to induce hydrous melting. Volcaniclastic sediments are shown to produce a sub-solidus assemblage of garnet, clinopyroxene, biotite, quartz/coesite and the accessory phases rutile ± Fe-Ti oxide ± apatite ± monazite ± zircon. Hydrous melt appears at temperatures exceeding 800-850 °C, irrespective of pressure. The melt-producing reaction consumes clinopyroxene, biotite and quartz/coesite and produces orthopyroxene. These phase relations differ from those of pelagic clays and K-bearing mid ocean ridge basalts (e.g. altered oceanic crust) that contain phengite, rather than biotite, as a sub-solidus phase. Despite their relatively high melt productivity, the wet solidus for volcaniclastic sediments is found to be higher (825-850 °C) than other marine sediments (700-750 °C) at 3 GPa. This trend is reversed at high-pressure conditions (6 GPa) where the biotite melting reaction occurs at lower temperatures (800-850 °C) than the phengite melting reaction (900-1000 °C). Trace element data was obtained from the 3 GPa run products, showing that partial melts are depleted in heavy rare earth elements (REE) and high field strength elements (HFSE), due to the presence of residual garnet and rutile, and are enriched in large ion lithophile elements (LILE), except for Sr and Ba. This is in contrast to previous experimental studies on pelagic sediments at sub-arc depths, where Sr and Ba are among the most enriched trace elements in glasses. This behavior can be partly attributed to the presence of residual apatite, which also host some light REE in our supra-solidus residues. Our new experimental results account for a wide range of trace element and U-series geochemical features of the sedimentary component of the Mariana arc magmas, including imparting a substantial Nb anomaly to melts from an anomaly-free protolith.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aleutian abyssal plain is a fossil abyssal plain of Paleogene age in the western Gulf of Alaska. The plain is a large, southward-thinning turbidite apron now cut off from sediment sources by the Aleutian Trench. Turbidite sedimentation ceased about 30 m.y. ago, and the apron is now buried under a thick blanket of pelagic deposits. Turbidites of the plain were recovered at site 183 of the Deep Sea Drilling Project on the northern edge of the apron. The heavy-mineral fraction of sand-sized samples is mostly amphibole and epidote with minor pyroxene, garnet, and sphene. The light-mineral fraction is mostly quartzose debris and feldspars. Subordinate lithic fragments consist of roughly equal amounts of metamorphic, plutonic, sedimentary, and volcanic grains. The sand compositions are arkoses in many sandstone classifications, although if fine silt is included with clay as matrix, the sand deposits are feldspathic or lithofeldspathic graywacke. The sands are apparently first-cycle products of deep dissection into a plutonic terrane, and they contrast sharply with arc-derived volcanic sandstones of similar age common on the adjacent North American continental margin. The turbidite sands are stratigraphically remarkably constant in composition, which indicates derivation from virtually the same terrane through a time span approaching 20 m.y. Comparison of Aleutian plain data with the compositions of coeval sedimentary rocks from the northeast Pacific margin shows that the Kodiak shelf area includes possible proximal equivalents of the more distal turbidites. Derivation from the volcaniclastic Mesozoic flysch of the Shumagin-Kodiak shelf is unlikely; more probably the sediments were derived from primary plutonic sources. The turbidites also resemble deposits in the Chugach Mountains and the younger turbidites of the Alaskan abyssal plain and could conceivably have been derived from the coast ranges of southeastern Alaska or western British Columbia. The Aleutian plain sediment most likely was not derived from as far south as the Oregon-Washington continental margin, where coeval sedimentary deposits are dominantly volcaniclastic.