556 resultados para West Antarctica


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of samples from the five sites drilled across the continental shelf and upper slope in Prydz Bay during ODP Leg 119 were consolidation tested in an oedometer. Preconsolidation stresses increase downcore at Sites 739 and 742 in a stepwise manner, and the steps are interpreted to represent periods of increased action of grounded glaciers covering the entire shelf. By the use of theoretical ice sheet surface profiles giving the range of possible ice thicknesses, sediment loading and subsequent erosion seem to be the most important factor for increasing the overconsolidation ratios, and a total glacial erosion exceeding 1 km is possible. Four separate steps in consolidation, here termed "load events" have been identified. The lowermost load event, 1, is correlated to the onset of glaciations reaching the shelf edge and an early period of extensive glaciations, starting in early Oligocene or possibly earlier. Glacial activity related to the buildup of ice in West Antarctica in the late Miocene is tentatively correlated to load event 2. Event 3 is the trace of relatively extensive glacial erosion probably in the Pliocene, whereas the upper step in preconsolidation stress, load event 4, results from the last glaciation reaching the shelf edge, possibly during the late Weichselian. Correlations to other data related to Antarctic glacial history are, however, hampered by the poor age control of the cored diamictites. Consolidation tests may provide a tool for finding the position for hiatuses and unconformities formed subglacially and obscured by subglacial reworking.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present here a new geological map of Potter Peninsula (King George Island, South Shetland Islands). Like on adjacent Barton Peninsula, the morphology on Potter Peninsula is predominantly characterized by a glacial landscape with abrasion platforms offshore, in parts steep cliffs along the coast, and a rather smooth, hilly countryside in the interior. Potter Peninsula forms part of the downthrown Warszawa Block. The volcanic sequence cropping out here belongs to the King George Island Supergroup, with an observed local minimum thickness of approx. 90 m (Kraus 2005). The most prominent morphological feature is Three Brothers Hill (196 m), a well known andesitic plug showing conspicuous columnar jointing. It marks the final stage of activity of a Paleogene volcano, whose eruption products (lava flows and pyroclastic rocks), together with hypabyssal intrusions related to the volcanism, make up most of the lithology observed on Potter Peninsula (Kraus 2005). The Three Brothers Hill volcanic complex is eroded down to its deepest levels. Thus, the stratigraphically deepest units from the initial phase of volcanic activity are cropping out in some parts (Kraus & del Valle, in Wienke et al. 2008). The lithology on Potter Peninsula comprises lava flows (~50%), pyroclastic rocks (ash-fallout, pyroclastic flow deposits, volcanic breccia and agglomerates, ~30%) and hypabyssal intrusions (dykes, sills and small subvolcanic intrusive bodies, ~20%). 40Ar/39Ar datings carried out on magmatic dykes from Potter Peninsula indicate a short, but intense intrusive event during the Lutetian (Kraus et al. 2007).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The southern Bellingshausen Sea (SBS) is a rapidly-changing part of West Antarctica, where oceanic and atmospheric warming has led to the recent basal melting and break-up of the Wilkins ice shelf, the dynamic thinning of fringing glaciers, and sea-ice reduction. Accurate sea-floor morphology is vital for understanding the continued effects of each process upon changes within Antarctica's ice sheets. Here we present a new bathymetric grid for the SBS compiled from shipborne echo-sounder, spot-sounding and sub-ice measurements. The 1-km grid is the most detailed compilation for the SBS to-date, revealing large cross-shelf troughs, shallow banks, and deep inner-shelf basins that continue inland of coastal ice shelves. The troughs now serve as pathways which allow warm deep water to access the ice fronts in the SBS. Our dataset highlights areas still lacking bathymetric constraint, as well as regions for further investigation, including the likely routes of palaeo-ice streams. The new compilation is a major improvement upon previous grids and will be a key dataset for incorporating into simulations of ocean circulation, ice-sheet change and history. It will also serve forecasts of ice stability and future sea-level contributions from ice loss in West Antarctica, required for the next IPCC assessment report in 2013.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major trough ('Belgica Trough') eroded by a palaeo-ice stream crosses the continental shelf of the southern Bellingshausen Sea (West Antarctica) and is associated with a trough mouth fan ('Belgica TMF') on the adjacent continental slope. Previous marine geophysical and geological studies investigated the bathymetry and geomorphology of Belgica Trough and Belgica TMF, erosional and depositional processes associated with bedform formation, and the temporal and spatial changes in clay mineral provenance of subglacial and glaciomarine sediments. Here, we present multi-proxy data from sediment cores recovered from the shelf and uppermost slope in the southern Bellingshausen Sea and reconstruct the ice-sheet history since the last glacial maximum (LGM) in this poorly studied area of West Antarctica. We combined new data (physical properties, sedimentary structures, geochemical and grain-size data) with published data (shear strength, clay mineral assemblages) to refine a previous facies classification for the sediments. The multi-proxy approach allowed us to distinguish four main facies types and to assign them to the following depositional settings: 1) subglacial, 2) proximal grounding-line, 3) distal sub-ice shelf/subsea ice, and 4) seasonal open-marine. In the seasonal open-marine facies we found evidence for episodic current-induced winnowing of near-seabed sediments on the middle to outer shelf and at the uppermost slope during the late Holocene. In addition, we obtained data on excess 210Pb activity at three core sites and 44 AMS 14C dates from the acid-insoluble fraction of organic matter (AIO) and calcareous (micro-)fossils, respectively, at 12 sites. These chronological data enabled us to reconstruct, for the first time, the timing of the last advance and retreat of the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS) in the southern Bellingshausen Sea. We used the down-core variability in sediment provenance inferred from clay mineral changes to identify the most reliable AIO 14C ages for ice-sheet retreat. The palaeo-ice stream advanced through Belgica Trough after ~36.0 corrected 14C ka before present (B.P.). It retreated from the outer shelf at ~25.5 ka B.P., the middle shelf at ~19.8 ka B.P., the inner shelf in Eltanin Bay at ~12.3 ka B.P., and the inner shelf in Ronne Entrance at ~6.3 ka B.P.. The retreat of the WAIS and APIS occurred slowly and stepwise, and may still be in progress. This dynamical ice-sheet behaviour has to be taken into account for the interpretation of recent and the prediction of future mass-balance changes in the study area. The glacial history of the southern Bellingshausen Sea is unique when compared to other regions in West Antarctica, but some open questions regarding its chronology need to be addressed by future work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The De Gerlache Seamounts are two topographic highs in the Bellingshausen Sea, southeastern Pacific. Petrological and geochemical studies together with K-Ar age determinations were carried out on four dredged basalt samples collected during a RV Polarstern expedition (ANT-XII/4) in 1995. Minor and trace element composition suggest alkaline basalt compositions. Compared to alkaline basalts of adjacent West Antarctica (the Jones Mountains) and of Peter I Island, the samples have lower mg-numbers, lower Ni and Cr contents and lower high field-strength elements (HFSE)/Nb and large-ion lithophile elements (LILE)/HFSE ratios. Three of the four samples have low K, Rb, and Cs concentrations relative to alkaline basalts. The K-depletion and other elemental concentrations may be explained by 1.1% melting of amphibole bearing mantle material. Additionally, low Rb and Ba values suggest low concentrations of these elements in the mantle source. K-Ar age determinations yield Miocene ages (20-23 Ma) that are similar in age to other alkaline basalts of West Antarctica (Thurston Island, the Jones Mountains, Antarctic Peninsula) and the suggested timing of onset of Peter I Island volcanism (~10-20 Ma). The occurrence of the DGS and Peter I Island volcanism along an older but reactivated tectonic lineation suggests that the extrusions exploited a zone of pre-existing lithospheric weakness. The alkaline nature and age of the DGS basalts support the assumption of plume activity in the Bellingshausen Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At Site 697 a 320 m thick Pleistocene and Pliocene section was recovered, consisting of hemipelagic terrigenous mud with varying amounts of diatoms, thin altered ash layers, and ice-rafted debris (IRD). Sedimentation rates range from 41 m/m.y. (upper Pleistocene) to 150 m/m.y. (lower Pliocene). Diatom percentage and sediment grain-size have been measured for the whole section with approximately one sample per 5,000 yr. IRD is most abundant in the lower Pliocene (sediments older than 4.5 Ma) following the first major West Antarctic glaciation. A decrease in IRD to near-zero above 3.2 Ma may record a transition from valley glaciers to a grounded ice-sheet on West Antarctica. Bottom current flow, recorded in sediments as the proportion of silt, was at a maximum around 3.0-3.3 Ma then gradually decreased until 0.5 Ma. In the upper Pleistocene, maxima in diatom percentage are assumed to occur during interglacials, implying reduced sea-ice cover; maxima in silt percentage correspond to diatom maxima, implying stronger bottom water flow during interglacials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geophysical data acquired using R/V Polarstern constrain the structure and age of the rifted oceanic margin of West Antarctica. West of the Antipodes Fracture Zone, the 145 km wide continent-ocean transition zone (COTZ) of the Marie Byrd Land sector resembles a typical magma-poor margin. New gravity and seismic reflection data indicates initial continental crust of thickness 24 km, that was stretched 90 km. Farther east, the Bellingshausen sector is broad and complex with abundant evidence for volcanism, the COTZ is ~670 km wide, and the nature of crust within the COTZ is uncertain. Margin extension is estimated to be 106-304 km in this sector. Seafloor magnetic anomalies adjacent to Marie Byrd Land near the Pahemo Fracture Zone indicate full-spreading rate during c33-c31 (80-68 Myr) of 60 mm/yr, increasing to 74 mm/yr at c27 (62 Myr), and then dropping to 22 mm/yr by c22 (50 Myr). Spreading rates were lower to the west. Extrapolation towards the continental margin indicates initial oceanic crust formation at around c34y (84 Myr). Subsequent motion of the Bellingshausen plate relative to Antarctica (84-62 Myr) took place east of the Antipodes Fracture Zone at rates <40 mm/yr, typically 5-20 mm/yr. The high extension rate of 30-60 mm/yr during initial margin formation is consistent with steep and symmetrical margin morphology, but subsequent motion of the Bellingshausen plate was slow and complex, and modified rift morphology through migrating deformation and volcanic centers to create a broad and complex COTZ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flow of ice streams, which account for most discharge from large ice sheets, is controlled by processes operating at their bed. Data from modern ice stream beds are difficult to obtain, but where ice advanced onto continental shelves during glacial periods extensive areas of the former bed can be imaged using modern swath sonar tools. We present new multibeam swath bathymetry data analyzed alongside sparse pre-existing data from the Amundsen Sea Embayment. The compilation is the most extensive, continuous area of multibeam data coverage yet obtained on the inner continental shelf of Antarctica. The data reveal streamlined subglacial bedforms that define a zone of paleo-ice stream convergence but, in contrast to previous models, do not show a simple down-flow progression of bedform types along paleo-ice stream troughs. We interpret high spatial variability of bedforms as indicating a complex mechanical and hydrodynamic regime at the former ice stream beds, consistent with observations from some modern ice streams. We conclude that care must be taken when using bedforms to infer paleo-ice stream velocities.