412 resultados para Water masses
Resumo:
Palynomorphs were studied in samples from Ocean Drilling Program (ODP) Leg 189, Holes 1172A and 1172D (East Tasman Plateau; 2620 m water depth). Besides organic walled dinoflagellate cysts (dinocysts), broad categories of other palynomorphs were quantified in terms of relative abundance. In this contribution, we provide an overview of the dinocyst distribution from the Maastrichtian to lowermost Oligocene and Quaternary intervals and illustrate main trends in palynomorph distribution. The uppermost Cretaceous-lowermost Oligocene succession of Site 1172 has a confident biomagnetostratigraphy, enabling us to tie early Paleogene Southern Hemisphere dinocyst events to the geomagnetic polarity timescale for the first time. Dinocyst species from the Maastrichtian to earliest Oligocene at Site 1172 are largely endemic ("Transantarctic Flora") or bipolar; cosmopolitan taxa are present in the background as well. The Maastrichtian-early late Eocene dinocyst assemblages are indicative of shallow-marine to restricted marine, pro-deltaic conditions, closely tied to a massive siliciclastic sequence. By middle late Eocene times (~35.5 Ma), the siliciclastic sequence gave way to a thin glauconitic unit, considered to reflect the deepening of the Tasmanian Gateway. This transition coincides with the most prominent change in dinocyst associations of the Paleogene. The turnover is inferred to reflect a change from marginal marine to more offshore conditions, with increased winnowing and oxidation. Overlying pelagic carbonate ooze of middle early Oligocene and younger age is virtually barren of organic microfossils, although Quaternary assemblages have been recovered. This aspect is taken to reflect average low sedimentation rates and well-oxygenated water masses during most of the Oligocene and Neogene. The few palynologically productive samples from the Oligocene-Quaternary interval have a stronger cosmopolitan to subtropical signature, with warm-water species being common to abundant.
Resumo:
The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM/m**2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind./m**3) in August. Algal bloom stage, chlorophyll-a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus (Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological ''hot-spots'' were associated with Arctic communities.
Resumo:
Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.
Resumo:
The POSEIDON cruise POS298/2 was carried out by the Institute of Oceanography of the University of Hamburg. Members of the University of Venice and the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste were participating in the cruise. The project was aimed at gaining a deeper knowledge on the water mass transformations occurring in the southern Adriatic and western Ionian Sea. To obtain this result CTD profiles, lADCP profiles and water samples for oxygen and salinity were taken and analysed. The cruise had several objectives: 1. Identifying the routes and characteristics of the fraction of deep water in the Ionian Sea which was generated in the Adriatic Sea. 2. Quantifying the mixing of the deep water generated in the Adriatic Sea with the ambient water masses on its way southward. 3. Estimating the importance of the deep water generated in the Adriatic Sea for the ventilation of the eastern Mediterranean Sea.
Resumo:
Size measurements of the calcareous nannofossil taxon Discoaster multiradiatus were carried out across the Paleocene-Eocene Thermal Maximum (PETM) in Ocean Drilling Program Holes 690B (Maud Rise, Weddell Sea) and 1209B (Shatsky Rise, Pacific Ocean). Morphometric investigations show that D. multiradiatus specimens are generally larger at ODP Site 1209 than at ODP Site 690. A limited increase in size of D. multiradiatus is recorded at ODP Site 1209, whereas significant enlargements characterize ODP Site 690. Preservation is comparable at both sites: nannofossils are moderately preserved with some evidence of etching/overgrowth in the PETM interval. Yet, D. multiradiatus variations do not correlate with preservation state and morphometric data most likely represent primary signals rather than diagenetic artifacts. There is a direct relationship between D. multiradiatus size and paleotemperatures: largest specimens are coeval with global warming associated with the PETM, inferred to result from excess atmospheric CO2 due to (partial) oxidation of massive quantities of methane. Size increases and largest specimens of D. multiradiatus occur at different stratigraphic levels within PETM at ODP Sites 690 and 1209. A marked shift in diameter size was observed at the onset and peak of the Carbon Isotopic Excursion (CIE) at ODP Site 690, but only at the end of CIE and initial recovery interval at ODP Site 1209. This diachroneity is puzzling, but indeed correlates well with reconstructed changes in surface and thermocline water masses temperature and salinity in the PETM interval at low and high latitudes. The presumed high concentrations of carbon dioxide seem to have not influenced the morphometry of D. multiradiatus. The major size increase of D. multiradiatus in the CIE of ODP Site 690 could represent the migration of larger-sized allochtonus specimens that moved from peri-equatorial/subtropical areas to higher latitudes during the warmest interval of the PETM, although no direct evidence of distinct populations/subpopulations has been obtained from the frequency diagrams. As a result, we infer that D. multiradiatus is a proxy of water masses stratification and might be used for deriving temperature-salinity-nutrient conditions in the mixed layer and thermocline and their dynamics.
Resumo:
Foraminifera shells from modern sediments document the hydrography of the coastal upwelling region off Northwest-Africa (12-35° N) through the stable isotopic composition of their shells. Oxygen isotopes in planktonic foraminifers reflect sea surface temperatures (SST) during the main growing season of the differnt species: Globigerinoides ruber (pink and white) and G. sacculifer delineate the temperatures of the summer, Globorotalia inflata and Pulleniatina obliquiloculata those of the winter. Oxygen isotopes on Globigerina bulloides document temperature ranges of the upwelling seasons. d18O values in planktonic foraminifera from plankton hauls resemble those from the surface sediment samples, if the time of the plankton collection is identical with that of the main growing season of the species. The combined isotopic record of G. ruber (white) and G. inflata clearly reveals the latitudinal variations of the annual mean SST. The deviation of the d18O values from both species from their common mean is a scale for the seasonality, i.e. the maximum temperature range within one year. Thus in the summer upwelling region (north of 25° N) seasonality is relatively low, while it becomes high in the winter upwelling region south of 20° N. Furthermore, the winter upwelling region is characterized by relatively high d18O values - indicating low temperatures - in G. bulloides, the region of summer upwelling by relatively low d180 values compared with the constructed annual mean SST. Generally, carbon isotopes from the plankton hauls coincide with those from sediment surface samples. The enrichment of 13C isotopes in foraminifers from areas with high primary production can be caused by the removal of 12C from the total dissolved inorganic carbon during phytoplankton blooms. It is found that carbon isotopes from plankton hauls off Northwest-Africa are relatively enriched in 13C compared with samples from the western Atlantic Ocean. Also shells of G. ruber (pink and white) from upwelling regions are enriched in the heavier isotope compared with regions without upwelling. In the sediment, the enrichement of 13C due to high primary production can only be seen in G. bulloides from the high fertile upwelling region south of 20° N. North of this latitude values are relatively low. An enrichment of 12C is observed in shells of G. ruber (pink), G. inflata and P. obliquiloculata from summer-winter- and perennial upwelling regions respectively. Northern water masses can be distinguished from their southern counterparts by relatively high oxygen and carbon values in the "living" (=stained) benthic foraminifera Uvigerina sp. and Hoeglundina elegans. A tongue of the Mediterranean Outflow water can be identified far to the south (20° N) by 13C-enriched shells of these benthic foraminifera. A zone of erosion (15-25° N, 300-600 m) with a subrecent sediment surface can be mapped with the help of oxygen isotopes in "dead" benthic specimens. Comparison of d18O values in aragonitic and calcitic benthic foraminifers does not show a differential influence of temperature on the isotopic composition in the carbonate. However, carbon isotopes reflect slightly differences under the influence of temperature.
Resumo:
On "Meteor" cruise 30 (1973) 22 piston-cores were collected off Sierra Leone from water-depths between about 5000 m (Sierra Leone Basin) and 500 m (upper continental slope) with the objective to study the sediment composition and age as well as processes of sedimentation on the continental slope in a tropical humid region. Granulometric analysis and determinations of the carbonate contents of the sediment samples were carried out, as well as qualitative and quantitative analysis of the components of the grain size fractions > 63 µm and of the planktonic and benthonic foraminifera > 160 µm. Presently, the cold Canary Current influences the composition of the planktonic foraminifera within the northwestern area of investigation (profile A), whereas the planktonic fauna of the eastern area (profile C) seems to be truly tropical. In all Quaternary sediments from the continental slope off Sierra Leone, species of Globorotalia are less abundant than in truly pelagic sediments. For that reason, the zonation of the Pleistocene sediments based on the presence or absence of Globorotalia cultrata does not always agree with the climatic changes reflected in the sediments. Concerning past climates better results can be obtained by using the changes in percentage abundances of Globigerina sp. sp. and Globigerinoides sp. sp. as indicators for cool and warm temperatures. The Tertiary sediments contain a pelagic foraminiferal assemblage. In the Holocene sediments the benthonic foraminifera do not only serve as good paleodepth indicators, but their communities are also restricted to defined water masses, which change their positions in accordance with climatic changes. Thus, Cassidulina carinata in the area of investigation is an excellent indicator for sediments deposited during times, which were cooler than today; this is true for all cores from the continental slope off Sierra Leone independent of water-depth although this species presently abounds at water-depths around 600 m. The cores from the continental rise and from the Sierra Leone Basin (M30-261, M30-146, M30-147) were deposited below the calcium carbonate compensation depth. Only small sections of the cores consist of the original carbonate-free sediments, whereas the main part of the sediment column is redeposited material, rich in foraminifera, which normally live on the upper continental slope, or even on the shelf. From these cores only M30-261 can be subdivided into biostratigraphic zones ranging from zone V to zone Y. In all cores from the middle and upper continental slope of the eastern area of investigation (profile C; KL 230, 209-204) and in cores KL 183 and KL 184 from the northwestern area (profile A) we observed an undisturbed succession of sediments from the biostratigraphic zones X (partly), Y and Z. All cores from the central area (M30-181, M30-182, M30-262 to 264) and M30-187 from the upper slope of profile A show variable hiatuses in the sedimentary record. Locally, high velocity bottom currents were probably responsible for erosion, nondeposition or minimal sedimentation rates. These currents might have been initiated partly by the somewhat exposed position of this part of the continental slope, where the shelf edge bends from a northwest towards an eastern direction, and partly by very young tectonic movements. Fracture zones with vertically displaced fault blocs are frequent at Sierra Leone continental margin. According to seismic measurements by McMaster et al. (1975) the sites of the central area are located on an uplifted fault bloc explaining the reduced sediment rates or erosion. Unlike the central area, the eastern area (profile C) is situated on a downfaulted bloc with high sediment rates. The sediments from the cores of profile B as well as the turbiditic deep-sea sediments were deposited under a higher flow regime; therefore they are coarser than the extremely fine-grained sediments of the cores from profile C. Since the sand fraction (> 63 µm) is mainly composed of foraminifera, besides pteropods and light-colored fecal pellets, the carbonate content increases with the increasing percentage of the coarse grain fraction. Higher concentrations of quartz were only observed in core sections with considerable carbonate dissolution (mainly in the X-Zone), and, in general, in all sediments from the eastern area with higher terrigenous input including larger concentration of mica. Especially during times transitional between glacials and interglacials (or interstadials) the bottom currents were intensified. The percentages of coarse fraction and carbonate increase with increasing current velocities. Calcium carbonate dissolution becomes important in water depths > 3500 m. During cooler times the lysokline is depressed. Light-colored fecal pellets were redeposited from Late Neogene sediments (M30-187, M30-181). In the area of investigation they occur in the Holocene and mainly the Pleistocene sediments of the cores from the northwestern and central area because only here Tertiary sediments have been eroded at the uppermost continental slope. In the central area there are at least two periods of non-sedimentation and/or erosion which can be confined as being (1) not older than middle Pliocene and not younger than zone V and (2) younger than zone W. The local character of the erosion is documented by the fact that a complete Late Quaternary section is present in the cores of the northwestern and eastern area, each within less than 100 km from incomplete cores from the central area.
Resumo:
1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction > 63 µ, total carbonate content, carbonate in fine fractions < 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the < 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.
Resumo:
Samples of filtered particulate organic matter (POM) were obtained during the summers of 1999 and 2000 from the surface waters of the Nordic seas to monitor the spatial distribution of long-chain alkenones. The aim of the study was to appraise existing alkenone-based climatic proxies in northern high latitudes. Unusually high percentages of the tetraunsaturated alkenone were measured in the polar waters of the East Greenland Current, with C37:4 of up to 77% in 80% of sea-ice cover. Values of percent C37:4 across the Nordic seas showed a strong association with water mass type. Analysis of coccoliths in filters indicated that calcified Emiliania huxleyi could not be discounted as the biological precursor of alkenones in all the water masses. A combined data set of 69 samples of POM revealed a stronger correlation of percent C37:4 to sea surface salinity (SSS; R2 = 0.72) than to sea surface temperature (SST; R2 = 0.50). Values of percent C37:4 in sea surface POM were much higher than those in surficial sediments of the northern North Atlantic. To explain the discrepancy in sedimentary and surface water column percent C37:4, we propose that the alkenone contents in surface sediments underlying arctic and polar waters are a combination of autochthonous and allochthonous inputs of alkenones. Our results show that percent C37:4 can be used to reconstruct the relative extension of arctic/polar water masses in the North Atlantic. However, the results prevent confirmation of percent C37:4 as a paleo-SSS proxy in the Nordic seas, given its multivariate nature in our data set and the decoupling between its range of values in surface waters and sediments.
Resumo:
Stratigraphic information from strontium, oxygen, and carbon isotopic ratios has been integrated with diatom and planktonic foraminifer datums to refine the Oligocene to early Miocene chemostratigraphy of Site 803. The Sr isotope results are based on analyses of mixed species of planktonic foraminifer and bulk carbonate samples. 87Sr/86Sr ratios of bulk carbonate samples are, in most cases, less radiogenic than contemporaneous seawater. Estimated sediment ages based on planktonic foraminifer 87Sr/86Sr ratios, using the Sr-isotope-age relation determined by Hess and others in 1989, are in moderately good agreement with the biostratigraphic ages. Chronological resolution is significantly enhanced with the correlation of oxygen and carbon isotope records to those of the standard Oligocene section tied to the Geomagnetic Polarity Time Scale at Site 522. Ages revised by this method and other published ages of planktonic foraminifer datums are used to revise the Oligocene stratigraphy of Site 77 to correlate the stable isotope records of Sites 77 and 803. Comparison of the Cibicidoides stable isotope records of Sites 77 and 574 with paleodepths below 2500 m in the central equatorial Pacific, and Site 803 at about 2000-m paleodepth in the Ontong Java Plateau reveals inversions in the vertical d18O gradient at several times during the Oligocene and in the early Miocene. The shallower water site had significantly-higher d18O values than the deeper water sites after the earliest Oligocene 18O enrichment and before 34.5 Ma, in the late Oligocene from 27.5 to at least 25 Ma, and in the early Miocene from 22.5 to 20.5 Ma. It is not possible to ascertain if the d18O inversion persisted during the Oligocene/Miocene transition because the deeper sites have hiatuses spanning this interval. We interpret this pattern to reflect that waters at about 2000 m depth were cold and may have formed from mixing with colder waters originating in northern or southern high-latitude regions. The deeper water appear to have been warmer and may have been a mixture with warm saline waters from mid- or low-latitude regions. No apparent vertical d13C gradient is present during the Oligocene, suggesting that the age difference of these water masses was small.
Resumo:
Up to the end of the eighties the main source of deep water masses in the Ionian Basin was the southern Adriatic Sea. However, during the nineties a dramatic climatic change took place in the eastern Mediterranean Sea: the Eastern Mediterranean Transient (EMT). Since then, deep water has been formed by waters originating in the Aegean Sea. Expeditions carried out in this region in recent years indicate that the process of deep water formation might reverse again. To what extent this assumption applies and what characteristics the deep water in the Ionian Sea exhibit nowadays, should be determined on the cruise. The process of a re-reversal of abyssal water production in the Ionian Sea is a long-term process and must therfore be monitored for several years. Hence, this cruise is part of a series of cruises investigating this question (POS98, M71/3, MSM13/1-2, MSM15/4). The investigations were carried out by means of CTD/lADCP measurements.
Resumo:
Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002-2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.
Resumo:
Work on M71-3 aimed to answer the question whether phosphate loss and incomplete utilisation of nitrate on the one hand, or dinitrogen fixation on the other hand are responsible for unusual nutrient ratios in the water column of the eastern Mediterranean Sea. We investigated the reason for unusually depleted 15N/14N ratios in dissolved nitrate, suspended matter and surface sediments of that oligotrohic ocean basin. During a total of 18 days of ship time on R/V METEOR, Leg 3 OF M71 performed water column and surface sediment work in the eastern Mediterranean Sea (Heraklion-Istanbul). Stations will be aligned on one E-W and two N-S transects and sampled all major basins and water masses. On stations, CTD casts were obtained and water samples for nutrient concentrations were taken. These samples and those of suspended matter and surface sediment will be analysed for the stable nitrogen isotope composition of dissolved nitrate, suspended matter, and surface sediments. In addition, phytoplankton samples were be taken and experiments were be carried out to determine N2 fixation rates, genetic expressions of nitrogen fixation, and the composition of microbial and algal assemblages. One mooring of sediment traps (Ierapetra Deep) was be deployed and will be recovered in September 2007 to monitor changes in particle flux and its isotope signature over a seasonal cycle.
Resumo:
A quantitative analysis was carried out of planktonic diatoms (biogenic opal) and calcareous nannofossils (biogenic calcite) in late Quaternary sediments (MIS 1-6) from four cores along a N-S transect east of New Zealand from 39°50'S to 50°04'S across the E-W-trending submarine ridge, the Chatham Rise. This was done to trace movements of oceanic fronts and to improve calcareous nannofossil stratigraphy for the last 130 000 yr in the SW Pacific. Sites ODP 1123 and Q 858 are below present day subtropical surface waters north of Chatham Rise. Site DSDP 594 is below present-day mixed temperate-subantarctic surface water south of the rise, and site ODP 1120 is below subantarctic surface water. The more diverse and opportunistic planktonic diatoms provided marker species for subtropical surface waters (Alveus marina, Fragilariopsis doliolus, Rhizosolenia bergonii and Azpeitia nodulifer) and others for subantarctic surface waters (Nitzschia kerguelensis, Thalassiosira lentiginosa). Application of these tracers permits the following conclusions: (1) subtropical conditions persisted north of Chatham Rise throughout the past 130 000 yr, in spite of the cooling of surface waters during colder periods; (2) during warm times (MIS 5 and MIS 3, and in MIS 1), the sporadic occurrence of subtropical species south of Chatham Rise indicates occasional admixture of subtropical surface waters that far south; (3) subantarctic waters extended to the southern slopes of the Chatham Rise during MIS 5b, late MIS 5a to early MIS 4, during the warmer time intervals in early MIS 3, and during latest MIS 3 to early MIS 2; (4) subantarctic frontal conditions existed over southern Chatham Rise during early MIS 4 and late MIS 3 to early MIS 2; and (5) it is probable that during cooler times, MIS 6, MIS 5b, and in MIS 2, intensified particle transport from the Bounty Trough to the northern flank of Chatham Rise occurred by intensified boundary currents. The larger abundance fluctuations in both microfossil groups at the sites south of Chatham Rise than north of Chatham Rise reflect northward shifts of the Circumpolar Subantarctic Water (CSW) and a contemporaneous disappearance of Australasian Subantarctic Water (ASW), implying an elevated temperature gradient between the surface water masses north and south of the Chatham Rise at the times of such northward shifts of CSW. Calcareous nannofossils are less diverse than diatoms, and are less specialised. Some calcareous nannofossil species show abundance shifts at the same time at different latitudes. Two of these abundance shifts can be used for correlation between subtropical and subantarctic sediments in the SW Pacific: (1) reversal in the relative abundance of Calcidiscus leptoporus and Coccolithus pelagicus associated with the MIS 2/1 boundary; and (2) drop in abundance of Gephyrocapsa muellerae or medium-sized Gephyrocapsa at the MIS 4/3 boundary. An additional abundance shift seems to be restricted to subtropical to mixed temperate-subtropical-subantarctic surface waters: (3) increase in abundance of G. muellerae or medium-sized Gephyrocapsa at the beginning of MIS 2 below the Okareka tephra.