204 resultados para Temperatures and wind


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Mediterranean Sea is at the transition between temperate and tropical air masses and as such of importance for studying climate change. The Gulf of Taranto and adjacent SW Adriatic Sea are at the heart of this region. Their sediments are excellently suited for generating high quality environmental records for the last millennia with a sub-decadal resolution. The quality of these records is dependent on a careful calibration of the transfer functions used to translate the sedimentary lipid signals to the local environment. Here, we examine and calibrate the UK'37 and TEX86 lipid-based temperature proxies in 48 surface sediments and relate these to ambient sea surface temperatures and other environmental data. The UK'37-based temperatures in surface sediments reflect winter/spring sea surface temperatures in agreement with other studies demonstrating maximum haptophyte production during the colder season. The TEX86-based temperatures for the nearshore sites also reflect winter sea surface temperatures. However, at the most offshore sites, they correspond to summer sea surface temperatures. Additional lipid and environmental data including the distribution of the BIT index and remote-sensed chlorophyll-a suggest a shoreward increase of the impact of seasonal and spatial variability in nutrients and control of planktonic archaeal abundance by primary productivity, particle loading in surface waters and/or overprint by a cold-biased terrestrial TEX86 signal. As such the offshore TEX86 values seem to reflect a true summer signal to the effect that offshore UK'37 and TEX86 reconstruct winter and summer temperature, respectively, and hence provide information on the annual temperature amplitude.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia. The capacity for aerobic activity (aerobic scope) declined at temperatures above the summer average (29°C) and in CO2-acidified water (pH 7.8 and ~1000 ppm CO2) compared to control water (pH 8.15). Aerobic scope declined by 36 and 32% for O. doederleini and O. cyanosoma at temperatures between 29 to 32°C, whereas it declined by 33 and 47% for O. doederleini and O. cyanosoma in acidified water compared to control water. Thus, the declines in aerobic scope in acidified water were similar to those caused by a 3°C increase in water temperature. Minimum aerobic scope values of ~200 mg O2 kg-1 h-1 were attained for both species in acidified water at 32°C, compared with over 600 mg O2 kg-1 h-1 in control water at 29°C. Mortality rate increased sharply at 33°C, indicating that this temperature is close to the lethal thermal limit for both species. Acidification further increased the mortality rate of O. doederleini, but not of O. cyanosoma. These results show that coral reef fishes are sensitive to both higher temperatures and increased levels of dissolved CO2, and that the aerobic performance of some reef fishes could be significantly reduced if climate change continues unabated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Planktic foraminiferal assemblages vary in response to seasonal fluctuations of hydrographic properties, between water masses, and after periodical changes and episodic events (e.g. reproduction, storms). Distinct annual variability of the planktic foraminiferal flux is also known from sediment trap data. In this paper we discuss the short-term impacts on interannual flux rates based on data from opening-closing net hauls obtained between the ocean surface and 500 m water depth. Data were recorded during April, May, June, and August at around 47°N, 20°W (BIOTRANS) in 1988, 1989, 1990, 1992, 1993, and during May 1989 and 1992 at 57°N, 20-22°W. Species assemblages closely resemble each other when comparing the mixed layer fauna with the fauna of the upper 100 m and the upper 500 m of the water column. In addition, species assemblages >100 µm are almost indistinguishable from assemblages that are >125 µm in test size. The standing stock of planktic foraminifers at BIOTRANS can vary by more than one order of magnitude over different years; however, species assemblages may be similar when comparing corresponding seasons. Early summer assemblages (June) are distinctly different from late summer assemblages (August). Significant variations in the species composition during spring (April/May) are independent of the mixed layer depth. Spring assemblages are characterized by high numbers of Globigerinita glutinata. In particular, day-to-day variations of the number of specimens and in species composition may have the same order of magnitude as interannual variations. This appears to be independent of the reproduction cycle. Species assemblages at 47°N and 57°N are similar during spring, although surface water temperatures and salinities differ by up to 10°C and 0.7 (PSU). We suggest that the main factors controlling the planktic foraminiferal fauna are the trophic properties in the upper ocean productive layer. Planktic foraminiferal carbonate flux as calculated from assemblages reveals large seasonal variations, a quasi-annual periodicity in flux levels, and substantial differences in timing and magnitude of peak fluxes. At the BIOTRANS station, the average annual planktic foraminiferal CaCO3 fluxes at 100 and 500 m depth are estimated to be 22.4 and 10.0 g/m**2/yr, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The glacial marine isotope stage 14 (MIS 14) appears in many climate records as an unusually warm glacial. During this period an almost monospecific, up to 1.5 m thick, laminated layer of the giant diatom Ethmodiscus rex has been deposited below the South Atlantic Subtropical Gyre. This oligotrophic region is today less favorable for diatom growth with sediments typically consisting of calcareous nannofossil oozes. We have reconstructed temperatures and the stable oxygen isotopic compositions of sea surface and thermocline water (d18Ow) from planktonic foraminiferal (Globigerinoides ruber and Globorotalia inflata) Mg/Ca and stable oxygen isotopes to test whether perturbations in surface ocean conditions contributed to the deposition of the diatom layer at ~530 kyr B.P. Temperatures and d18Ow values reconstructed from this diatom ooze interval are highly variable, with maxima similar to interglacial values. Since the area of the Ethmodiscus oozes resembles the region where Agulhas rings are present, we interpret these hydrographic changes to reflect the varying influence of warm and saline water of Indian Ocean origin that entered the Subtropical Gyre trapped in Agulhas rings. The formation of the Ethmodiscus oozes is associated with a period of maximum Agulhas leakage and a maximum frequency of Agulhas ring formation caused by a termination-type position of the Subtropical Front during the unusual warm MIS 14. The input of silica through the Agulhas rings enabled the shift in primary production from calcareous nannoplankton to diatoms, leading to the deposition of the massive diatom oozes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent efforts to link the isotopic composition of snow in Greenland with meteorological and climatic parameters have indicated that relatively local information such as observed annual temperatures from coastal Greenland sites, as well as more synoptic scale features such as the North Atlantic Oscillation (NAO) and the temperature seesaw between Jakobshaven, Greenland, and Oslo, Norway, are significantly correlated with d18O and dD values from the past few hundred years measured in ice cores. In this study we review those efforts and then use a new record of isotope values from the Greenland Ice Sheet Project 2 and Greenland Ice Core Project sites at Summit, Greenland, to compare with meteorological and climatic parameters. This new record consists of six individual annually resolved isotopic records which have been average to produce a Summit stacked isotope record. The stacked record is significantly correlated with local Greenland temperatures over the past century (r=0.471), as well as a number of other records including temperatures and pressures from specific locations as well as temperature and pressure patterns such as the temperature seesaw and the North Atlantic Oscillation. A multiple linear regression of the stacked isotope record with a number of meteorological and climatic parameters in the North Atlantic region reveals that five variables contribute significantly to the variance in the isotope record: winter NAO, solar irradiance (as recorded by sunspot numbers), average Greenland coastal temperature, sea surface temperature in the moisture source region for Summit (30°-20°N), and the annual temperature seesaw between Jakobshaven and Oslo. Combined, these variables yield a correlation coefficient of r=0.71, explaining half of the variance in the stacked isotope record.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface and deep water circulation patterns in the eastern Indian Ocean during the Paleocene Epoch are inferred based on an integrated magnetobiostratigraphic and stable isotope investigation of Ocean Drilling Program Hole 761B, drilled on the Wombat Plateau. A combination of magnetostratigraphy, biostratigraphy and isotope stratigraphy demonstrates that numerous deep sea sites that have been considered to show continuous, or nearly continuous sedimentation through the Paleocene are punctuated by a series of hiatuses, some of which exceeding a duration of 1 Myr. Therefore, our study is based on a detailed temporal interpretation of the stratigraphic successions we used for paleoceanographic reconstructions. We compare detailed planktonic and benthic foraminiferal carbon and oxygen isotope records from Hole 761B with several temporally correlative records published from different oceanic provinces in order to distinguish between local and global patterns within the eastern Indian Ocean. Although Site 761 was situated at low latitudes during the Paleocene, its surface waters were predominantly influenced by circulation originating from the Southern Ocean as indicated by inferred cool sea surface temperatures and reduced surface to deep water temperature gradients. We suggest that deep waters in the eastern Indian Ocean were not directly fed by the Southern or Tethys Oceans. Rather, the more negative delta13C composition of the bottom waters recorded by benthic foraminifera implies the presence and/or active contribution of aged deep waters from the Pacific during this time, at least prior to ~60.2 Ma and subsequent to ~59.0 Ma. The Indian continent, Ninetyeast Ridge, Kerguelen Plateau and Broken Ridge may have played a significant role as submarine barriers to deep water circulation during the Paleocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to their aragonitic shell, thecosome pteropods may be particularly vulnerable to ocean acidification driven by anthropogenic CO2 emissions. This applies specifically to species inhabiting Arctic surface waters that are projected to become temporarily and locally undersaturated with respect to aragonite as early as 2016. This study investigated the effects of rising partial pressure of CO2 (pCO2) and elevated temperature on pre-winter juveniles of the polar pteropod Limacina helicina. After a 29 day experiment in September/October 2009 at three different temperatures and under pCO2 scenarios projected for this century, mortality, shell degradation, shell diameter and shell increment were investigated. Temperature and pCO2 had a significant effect on mortality, but temperature was the overriding factor. Shell diameter, shell increment and shell degradation were significantly impacted by pCO2 but not by temperature. Mortality was 46% higher at 8 °C than at in situ temperature (3 °C), and 14% higher at 1100 ?atm than at 230 ?atm. Shell diameter and increment were reduced by 10 and 12% at 1100 ?atm and 230 ?atm, respectively, and shell degradation was 41% higher at elevated compared to ambient pCO2. We conclude that pre-winter juveniles will be negatively affected by both rising temperature and pCO2 which may result in a possible decline in abundance of the overwintering population, the basis for next year's reproduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Five frequently-used models were chosen and evaluated to calculate the viscosity of the mixed oil. Totally twenty mixed oil samples were prepared with different ratios of light to crude oil from different oil wells but the same oil field. The viscosities of the mixtures under the same shear rates of 10 s**-1 were measured using a rotation viscometer at the temperatures ranging from 30°C to 120°C. After comparing all of the experimental data with the corresponding model values, the best one of the five models for this oil field was determined. Using the experimental data, one model with a better accuracy than the existing models was developed to calculate the viscosity of mixed oils. Another model was derived to predict the viscosity of mixed oils at different temperatures and different values of mixing ratio of light to heavy oil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Warming seawater temperatures and ocean acidification on the coastal western Antarctic Peninsula pose unique challenges to stenothermal marine invertebrates. The present study examines prospective sub-lethal effects of elevated temperature, pCO2, and resultant decrease in seawater pH, on righting behavior and maximal escape speeds for two common gastropods, the limpet Nacella concinna (Strebel) and mesogastropod snail Margarella antarctica (Lamy). Replicate individuals held in individual containers were exposed to four combinations of seawater temperature (1.5 °C-current average, 3.5 °C-projected average by 2100) and pH (pH 8.0-current average, pH 7.8-projected average by 2100 as a result of elevated pCO2 levels) for a period of 6 weeks. Following this chronic exposure, righting behavior, determined for the limpets as proportion to right over 24 h and for snails as time to right, as well as maximum escape speed following contact with a sea star predator were measured. We found no significant differences in proportions of limpets displaying the capacity to right among the four temperature-pH treatments. However, there was a significant temperature-pH interaction effect for mean righting times in snails, indicating that the effect of pH on the time to right is dependent on temperature. We found no significant effects of temperature or pH on mean maximal escape speed in limpets. Additionally, we observed a significant temperature-pH interaction effect for mean maximal escape speed in snails. These interactive effects make it difficult to make clear predictions about how these environmental factors may impact behavioral responses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The combined effects of ocean warming and acidification were compared in larvae from two populations of the cold-eurythermal spider crab Hyas araneus, from one of its southernmost populations (around Helgoland, southern North Sea, 54°N, habitat temperature 3-18°C; collection: January 2008, hatch: January-February 2008) and from one of its northernmost populations (Svalbard, North Atlantic, 79°N, habitat temperature 0-6°C; collection: July 2008, hatch: February-April 2009). Larvae were exposed to temperatures of 3, 9 and 15°C combined with present-day normocapnic (380 ppm CO2) and projected future CO2 concentrations (710 and 3,000 ppm CO2). Calcium content of whole larvae was measured in freshly hatched Zoea I and after 3, 7 and 14 days during the Megalopa stage. Significant differences between Helgoland and Svalbard Megalopae were observed at all investigated temperatures and CO2 conditions. Under 380 ppm CO2, the calcium content increased with rising temperature and age of the larvae. At 3 and 9°C, Helgoland Megalopae accumulated more calcium than Svalbard Megalopae. Elevated CO2 levels, especially 3,000 ppm, caused a reduction in larval calcium contents at 3 and 9°C in both populations. This effect set in early, at 710 ppm CO2 only in Svalbard Megalopae at 9°C. Furthermore, at 3 and 9°C Megalopae from Helgoland replenished their calcium content to normocapnic levels and more rapidly than Svalbard Megalopae. However, Svalbard Megalopae displayed higher calcium contents under 3,000 ppm CO2 at 15°C. The findings of a lower capacity for calcium incorporation in crab larvae living at the cold end of their distribution range suggests that they might be more sensitive to ocean acidification than those in temperate regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the fourth Antarctic voyage ANT-IV of the research icebreaker POLARSTERN standard meteorological measurements have been performed. The measurements include 3-hourly synoptic observations as well as daily upper air soundings. The measurements started on September 6 1985 at Bremerhaven and were terminated at April 28 1986 in Punta Arenas. The 3-hourly synoptic observations are performed following the instructions of the FM 13 ships code defined by the World Meteorological Organization (WMO). The datasets include automatic measurements such as mean ship's speed, wind velocity, wind direction, air temperature, water temperature as well as visual observations such as total cloud amount, present weather, clouds, height and period of swell waves, ice classification. The visual observation are not performed during night time. For the upper air soundings VAISALA RS80 radiosondes, carried by helium-filled balloons (TOTEX 350 - 1500) were used. Data reception and evaluation were carried out by a MicroCora System (VAISALA). The upper air soundings include profile measurements of pressure, temperature, relative humidity and wind vector. Usually the soundings started at the heliport (10 m above sea level) and terminated between 15 and 37 km. The height of the measurements was calculated by applying the barometric formula. The wind vector was determined with the aid of the OMEGA navigation system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is limited knowledge pertaining to the history of the Greenland Ice Sheet (GIS) during the last glacial-interglacial transition as it retreated from the continental margins to an inland position. Here we use multiproxy data, including ice-rafted debris (IRD); planktonic isotopes; alkenone temperatures; and tephra geochemistry from the northern Labrador Sea, off southwest Greenland, to investigate the deglacial response of the GIS and evaluate its implications for the North Atlantic deglacial development. The results imply that the southern GIS retreated in three successive stages: (1) early deglaciation of the East Greenland margins, by tephra-rich IRD that embrace Heinrich Event 1; (2) progressive retreat during Allerød culminating in major meltwater releases (d18O depletion of 1.2 per mil) at the Allerød-Younger Dryas transition (12.8-13.0 kyr B.P.); and (3) a final stage of glacial recession during the early Holocene (~9-11 kyr B.P.). Rather than indicating local temperatures of ambient surface water, the alkenones likely were transported to the core site by the Irminger Current. We attribute the timing of GIS retreat to the incursion of warm intermediate waters along the base of grounded glaciers and below floating ice shelves on the continental margin. The results lend support to the view that GIS meltwater presented a forcing factor for the Younger Dryas cooling.