378 resultados para Tadashi Suzuki
Resumo:
Perylene is present in high concentration in Paleogene sediments from the Sanriku-oki borehole of the Ministry of International Trade and Industry (MITI), northeastern Japan. The borehole penetrates a thick sequence of Late Cretaceous to Neogene sediments deposited under a range of conditions, including fluvial-deltaic and shallow marine. Organic petrological and geochemical data show the sediments to be rich in organic matter (OM) derived from higher plants. Biomarker analysis of aliphatic and aromatic hydrocarbons confirms a significant input from higher plants, with extracts dominated by numerous gymnosperm- and angiosperm-derived biomarkers such as diterpanes, oleanenes, des-A-triterpanes and their aromatized counterparts. The highest concentration of perylene occurs in Middle Eocene sediments deposited in a relatively reducing environment. Stable carbon isotope compositions show 13C enrichment in perylene compared to gymnosperm and angiosperm biomarkers, consistent with a fungal origin. This elevated abundance of sedimentary perylene could relate to a Paleogene continental climate where fungi probably flourished.
Resumo:
On-deck CO2-Fe-manipulated incubation experiments were conducted using surface seawater collected from the Western Subarctic Gyre of the NW Pacific in the summer of 2008 to elucidate the impacts of ocean acidification and Fe enrichment on the abundance and community composition of phytoplankton and eubacteria in the study area. During the incubation, excluding the initial period, the mean partial pressures of CO2 in non-Fe-added bottles were 230, 419, 843, and 1124 µatm, whereas those in Fe-added treatments were 152, 394, 791, and 1008 µatm. Changes in the abundance and community composition of phytoplankton were estimated using HPLC pigment signatures with the program CHEMTAX and flow cytometry. A DGGE fingerprint technique targeting 16S rRNA gene fragments was also used to estimate changes in eubacterial phylotypes during incubation. The Fe addition induced diatom blooms, and subsequently stimulated the growth of heterotrophic bacteria such as Roseobacter, Phaeobacter, and Alteromonas in the post-bloom phase. In both the Fe-limited and Fe-replete treatments, concentrations of 19'-hexanoyloxyfucoxanthin, a haptophyte marker, and the cell abundance of coccolithophores decreased at higher CO2 levels (750 and 1000 ppm), whereas diatoms exhibited little response to the changes in CO2 availability. The abundances of Synechococcus and small eukaryotic phytoplankton (<10 µm) increased at the higher CO2 levels. DGGE band positions revealed that Methylobacterium of Alphaproteobacteria occurred solely at lower CO2 levels (180 and 380 ppm) during the post-bloom phase. These results suggest that increases in CO2 level could affect not only the community composition of phytoplankton but also that of eubacteria. As these microorganisms play critical roles in the biological carbon pump and microbial loop, our results indicate that the progression of ocean acidification can alter the biogeochemical processes in the study area.
Resumo:
The interactive effects of nutrient availability and ocean acidification on coral calcification were investigated using post-settlement juvenile corals of Acropora digitifera cultured in nutrient-sufficient or nutrient-depleted seawater for 4 d and then exposed to seawater with different partial pressure of carbon dioxide () conditions (38.8 or 92.5 Pa) for 10 d. After the nutrient pretreatment, corals in the high nutrient condition (HN corals) had a significantly higher abundance of endosymbiotic algae than did those in the low nutrient condition (LN corals). The high abundance of endosymbionts in HN corals was reduced as a result of subsequent seawater acidification, and the chlorophyll a per algal cell increased. The photosynthetic oxygen production rate by endosymbionts was enhanced by the acidified seawater regardless of the nutrient treatment, indicating that the reduction in endosymbiont density in HN corals due to acidification was compensated for by the increase in chlorophyll a per cell. Though the photosynthetic rate increased in the acidified conditions for both LN and HN corals, the calcification rate significantly decreased for LN corals but not for HN corals. The acquisition of nutrients from seawater, rather than the increase in alkalinity caused by photosynthesis, might effectively alleviate the negative response of coral calcification to seawater acidification, suggesting that the response of corals and their endosymbionts to ocean acidification can be influenced by nutrient conditions.
Resumo:
Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic rates in acidified seawater because both calcifying and non-calcifying marine invertebrates could show metabolic depression under reduced pH in order to enhance their survival. In this study, after 3-d and 7-d exposure to three different pH levels (8.0, 7.6, and 7.3), we found that the oxygen consumption of Acropora digitifera larvae tended to be suppressed with reduced pH, although a statistically significant difference was not observed between pH conditions. Larval metamorphosis was also observed, confirming that successful recruitment is impaired when metamorphosis is disrupted, despite larval survival. Results also showed that the metamorphosis rate significantly decreased under acidified seawater conditions after both short (2 h) and long (7 d) term exposure. These results imply that acidified seawater impacts larval physiology, suggesting that suppressed metabolism and metamorphosis may alter the dispersal potential of larvae and subsequently reduce the resilience of coral communities in the near future as the ocean pH decreases.