571 resultados para Stratigraphy, paleontology, petrology, geochemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basement of Bougainville Guyot drilled at Site 831 consists of andesitic hyalobreccias derived from a submarine arc volcano. The volcanic sequence has been dated by K/Ar at approximately 37 Ma. The 121 m of andesitic hyalobreccias drilled in Hole 831B have been divided into five subunits of two types: one appears to be primary, and the other contains evidence of reworking and a subaerial clastic input. Variations are attributed to fluctuations in water depth. The distinctive hyalobreccias consist of andesitic blebs with chilled margins and peripheral fractures set in a chaotic greenish matrix that is mainly altered glass, with crystals similar to those in the blebs or clasts. Their formation is attributed to violent reaction of andesitic magma discharged into seawater, in perhaps the submarine equivalent of fire-fountaining. There was limited reworking by currents and debris flows on the flanks of the submarine volcano. The andesite shows no significant compositional variation in phenocryst phases throughout the drilled sequence and contains phenocrysts of plagioclase (An88-43), clinopyroxene (Ca44Mg46Fe10-Ca41Mg40Fe19), orthopyroxene (Ca4Mg79Fe17-Ca3Mg58Fe39), and titanomagnetite. There is a systematic change in volcanic composition with height in the section, from more mafic andesites at the base, to overlying more acid andesites, and strong evidence exists that magma mixing may have played a significant role in the genesis of these lavas. The andesites have affinities with the low-K arc tholeiite series. Trace element and isotopic systematics for these rocks indicate very minor involvement of a LILE- and 87Sr-enriched slab-derived fluid in their petrogenesis. This accords with the previous suggestion that Bougainville Guyot forms part of an Eocene proto-island arc developed along the southern side of the d'Entrecasteaux Zone, above a southward-dipping subduction zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the possibility that glacial increase in the areal extent of reducing sediments might have changed the oceanic Cd inventory, thereby decoupling Cd from PO4. We suggest that the precipitation of Cd-sulfide in suboxic sediments is the single largest sink in the oceanic Cd budget and that the accumulation of authigenic Cd and U is tightly coupled to the organic carbon flux into the seafloor. Sediments from the Subantarctic Ocean and the Cape Basin (South Atlantic), where oxic conditions currently prevail, show high accumulation rates of authigenic Cd and U during glacial intervals associated with increased accumulation of organic carbon. These elemental enrichments attest to more reducing conditions in glacial sediments in response to an increased flux of organic carbon. A third core, overlain by Circumpolar Deep Water (CPDW) as are the other two cores but located south of the Antarctic Polar Front, shows an approximately inverse pattern to the Subantarctic record. The contrasting patterns to the north and south of the Antarctic Polar Front suggest that higher accumulation rates of Cd and U in Subantarctic sediments were driven primarily by increased productivity. This proposal is consistent with the hypothesis of glacial stage northward migration of the Antarctic Polar Front and its associated belt of high siliceous productivity. However, the increase in authigenic Cd and U glacial accumulation rates is higher than expected simply from a northward shift of the polar fronts, suggesting greater partitioning of organic carbon into the sediments during glacial intervals. Lower oxygen content of CPDW and higher organic carbon to biogenic silica rain rate ratio during glacial stages are possible causes. Higher glacial productivity in the Cape Basin record very likely reflects enhanced coastal up-welling in response to increased wind speeds. We suggest that higher productivity might have doubled the areal extent of suboxic sediments during the last glacial maximum. However, our calculations suggest low sensitivity of seawater Cd concentrations to glacial doubling of the extent of reducing sediments. The model suggests that during the last 250 kyr seawater Cd concentrations fluctuated only slightly, between high levels (about 0.66 nmol/kg) on glacial initiations and reaching lowest values (about 0.57 nmol/kg) during glacial maxima. The estimated 5% lower Cd content at the last glacial maximum relative to modern levels (0.60 nmol/kg) cannot explain the discordance between Cd and delta13C, such as observed in the Southern Ocean. This low sensitivity is consistent with foraminiferal data, suggesting minimal change in the glacial Cd mean oceanic content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a synthesis of some 20,504 mineral analyses of ~500 Hole 735B gabbros, including 10,236 new analyses conducted for this paper. These are used to construct a mineral stratigraphy for 1.5-km-deep Hole 735B, the only long section of the lower crust drilled in situ in the oceans. At long wavelengths, generally >200 m, there is a good chemical correlation among the principal silicate phases, consistent with the in situ crystallization of three or four distinct olivine gabbro bodies, representing at least two major cycles of intrusion. Initial cooling and crystallization of these bodies must have been fairly rapid to form a crystal mush, followed by subsequent compaction and migration of late iron-titanium-rich liquids into shear zones and fractures through which they were emplaced to higher levels in the lower crust where they crystallized and reacted with the olivine gabbro host rock to form a wide variety of ferrogabbros. At the wave lengths of the individual intrusions, as represented by the several olivine gabbro sequences, there is a general upward trend of iron and sodium enrichment but a poor correlation between the compositions of the major silicate phases. This, together with a wide range in minor incompatible and compatible element concentrations in olivine and pyroxene at a given Mg#, is consistent with widespread permeable flow of late melt through these intrusions, in contrast to what has been documented for a 600-m section of reputedly fast-spreading ocean crust in the Oman Ophiolite. This unexpected finding could be related to enhanced compaction and deformation-controlled late-stage melt migration at the scale of intrusion at a slow-spreading ocean ridge, compared to the relatively static environment in the lower crust at fast-spreading ridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase relations of natural volcaniclastic sediments from the west Pacific Ocean were investigated experimentally at conditions of 3-6 GPa and 800-900 °C with 10 wt.% added H2O (in addition to ~ 10 wt.% structurally-bound H2O) to induce hydrous melting. Volcaniclastic sediments are shown to produce a sub-solidus assemblage of garnet, clinopyroxene, biotite, quartz/coesite and the accessory phases rutile ± Fe-Ti oxide ± apatite ± monazite ± zircon. Hydrous melt appears at temperatures exceeding 800-850 °C, irrespective of pressure. The melt-producing reaction consumes clinopyroxene, biotite and quartz/coesite and produces orthopyroxene. These phase relations differ from those of pelagic clays and K-bearing mid ocean ridge basalts (e.g. altered oceanic crust) that contain phengite, rather than biotite, as a sub-solidus phase. Despite their relatively high melt productivity, the wet solidus for volcaniclastic sediments is found to be higher (825-850 °C) than other marine sediments (700-750 °C) at 3 GPa. This trend is reversed at high-pressure conditions (6 GPa) where the biotite melting reaction occurs at lower temperatures (800-850 °C) than the phengite melting reaction (900-1000 °C). Trace element data was obtained from the 3 GPa run products, showing that partial melts are depleted in heavy rare earth elements (REE) and high field strength elements (HFSE), due to the presence of residual garnet and rutile, and are enriched in large ion lithophile elements (LILE), except for Sr and Ba. This is in contrast to previous experimental studies on pelagic sediments at sub-arc depths, where Sr and Ba are among the most enriched trace elements in glasses. This behavior can be partly attributed to the presence of residual apatite, which also host some light REE in our supra-solidus residues. Our new experimental results account for a wide range of trace element and U-series geochemical features of the sedimentary component of the Mariana arc magmas, including imparting a substantial Nb anomaly to melts from an anomaly-free protolith.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basalts collected during drilling and diving programs on Serocki Volcano mostly fall within a limited compositional range, and are moderately evolved, normal MORBs with distinctive high MgO contents (averaging 7.60 wt%) and high A1203 concentrations (averaging 16.14 wt% in whole rock samples). However, samples recovered from within the central crater have lower Ti02 and FeO*/MgO, and higher MgO and Al2O3 concentrations, and are most similar to glasses recovered at Site 649 about 45 km to the north. Comparison of the observed geochemical variations with low-pressure experimental work and other samples from the region suggests that the Serocki Volcano and Site 649 data are compatible with crystal-liquid fractionation involving both olivine and early-stage clinopyroxene, as well as plagioclase, and that the sources may be similar even though Sites 648 and 649 are located in different, but adjacent, spreading cells. Consideration of the stratigraphy and morphology of Serocki Volcano suggests that this feature is more properly described as a megatumulus or lava delta, associated with a steeper, conical peak to the southwest. The evolution of Serocki Volcano involved early construction of a marginal rampart of pillows, followed by doming of this feature and the formation of a perched lava pond. Draining of this pond resulted in collapse and the formation of the central crater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterize the textural and geochemical features of ocean crustal zircon recovered from plagiogranite, evolved gabbro, and metamorphosed ultramafic host-rocks collected along present-day slow and ultraslow spreading mid-ocean ridges (MORs). The geochemistry of 267 zircon grains was measured by sensitive high-resolution ion microprobe-reverse geometry at the USGS-Stanford Ion Microprobe facility. Three types of zircon are recognized based on texture and geochemistry. Most ocean crustal zircons resemble young magmatic zircon from other crustal settings, occurring as pristine, colorless euhedral (Type 1) or subhedral to anhedral (Type 2) grains. In these grains, Hf and most trace elements vary systematically with Ti, typically becoming enriched with falling Ti-in-zircon temperature. Ti-in-zircon temperatures range from 1,040 to 660°C (corrected for a TiO2 ~ 0.7, a SiO2 ~ 1.0, pressure ~ 2 kbar); intra-sample variation is typically ~60-15°C. Decreasing Ti correlates with enrichment in Hf to ~2 wt%, while additional Hf-enrichment occurs at relatively constant temperature. Trends between Ti and U, Y, REE, and Eu/Eu* exhibit a similar inflection, which may denote the onset of eutectic crystallization; the inflection is well-defined by zircons from plagiogranite and implies solidus temperatures of ~680-740°C. A third type of zircon is defined as being porous and colored with chaotic CL zoning, and occurs in ~25% of rock samples studied. These features, along with high measured La, Cl, S, Ca, and Fe, and low (Sm/La)N ratios are suggestive of interaction with aqueous fluids. Non-porous, luminescent CL overgrowth rims on porous grains record uniform temperatures averaging 615 ± 26°C (2SD, n = 7), implying zircon formation below the wet-granite solidus and under water-saturated conditions. Zircon geochemistry reflects, in part, source region; elevated HREE coupled with low U concentrations allow effective discrimination of ~80% of zircon formed at modern MORs from zircon in continental crust. The geochemistry and textural observations reported here serve as an important database for comparison with detrital, xenocrystic, and metamorphosed mafic rock-hosted zircon populations to evaluate provenance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four petrographic lava types occur, ranging from aphyric to moderately phyric clinopyroxene-olivine tholeiitic basalts (Unit 1); olivine-clinopyroxene picritic basalts, sparsely to strongly olivine-phyric (Unit 3-type); olivine-clinopyroxene basalts (clinopyroxene dominant) (Unit 4); and moderately to strongly phyric two-pyroxene-plagioclase basaltic andesites (Unit 9-type). The olivine phyric lavas contain forsteritic olivines (extending to Fo92), and very magnesian Cr-rich spinels similar to those occurring in boninitic lavas. The basaltic andesites are mineralogically and petrographically indistinguishable from the modern Tofua Arc basaltic andesites, one notable feature being the highly calcic cores in plagioclase phenocrysts (up to An95). The forsteritic olivines, the Cr-spinels, and the calcic plagioclases are unlikely to have been precipitated in the lava compositions in which they occur, and are thought to have been incorporated from highly primitive melts by way of mixing processes (as advocated by Allan, this volume). Notwithstanding the evidence for mixing, the major element chemistries of the Unit 1- and Unit 9-type lavas are shown to be consistent with the derivation of the Unit 9-type basaltic andesites by means of fractional crystallization, through magmas of similar chemistry to Unit 1. Some trace element discrepancies in the modeling, and the relative volcanic stratigraphy of Site 839, however, preclude a direct liquid line of descent between the actual recovered units. Trace element data as well as TiO2 and Na2O data clearly illustrate the arc-like affinities of the magmas, with strong highfield-strength element depletion and large-ion-lithophile element enrichment. The abundance patterns are very close to those of the Tofua and Kermadec arc magmas, and also Valu Fa. Pb-, Sr-, and Nd-isotopic compositions indicate closest affinities with a "Pacific" MORB source, apparently characteristic of the western, older part of the Lau Basin. A subduction-related isotopic contribution is, however, inferred. The sources of the Site 839 magmas are thus inferred to be similar to, but less depleted geochemically, than those of the modern Tofua Arc magmas. The Site 839 sequence is interpreted as an older remnant of a volcanic construct of the "proto-Tofua arc", originally developed adjacent to the Tonga Ridge. Opening of the eastern Lau Basin, because of southward migrating propagators, has split and isolated the sequence, leaving it stranded within the modern Lau Basin.