344 resultados para Single-electron transport
Resumo:
Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ at 0.2 m depth using a combination of three mean CO2 levels (500, 700-800 and 1200 µatm CO2), two light levels (100 and 70% of surface irradiance) and two nutrient levels of N, P, and K (enriched vs. non-enriched treatments) in the non-calcified macroalga Cystoseira compressa (Phaeophyceae, Fucales) and calcified Padina pavonica (Phaeophyceae, Dictyotales). A suite of biochemical assays and in vivo chlorophyll a fluorescence parameters showed that elevated CO2 levels benefitted both of these algae, although their responses varied depending on light and nutrient availability. In C. compressa, elevated CO2 treatments resulted in higher carbon content and antioxidant activity in shaded conditions both with and without nutrient enrichment-they had more Chla, phenols and fucoxanthin with nutrient enrichment and higher quantum yield (Fv/Fm) and photosynthetic efficiency (alpha ETR) without nutrient enrichment. In P. pavonica, elevated CO2 treatments had higher carbon content, Fv/Fm, alpha ETR, and Chla regardless of nutrient levels-they had higher concentrations of phenolic compounds in nutrient enriched, fully-lit conditions and more antioxidants in shaded, nutrient enriched conditions. Nitrogen content increased significantly in fertilized treatments, confirming that these algae were nutrient limited in this oligotrophic part of the Mediterranean. Our findings strengthen evidence that brown algae can be expected to proliferate as the oceans acidify where physicochemical conditions, such as nutrient levels and light, permit.
Resumo:
Ocean acidification represents a key threat to the recruitment of scleractinian corals. Here, we investigated the effect of increased partial pressure of carbon dioxide (pCO2) on the early development of Pocillopora damicornis by rearing the recruits for 12 days at 3 pCO2 levels (446, 896 and 1681 µatm). Results showed that increased pCO2 exerted minor effects on symbiont density and maximum quantum yield (Fv/Fm), while significantly enhanced the relative electron transport through photosystem II (PSII) of Symbiodinium. Notably, calcification and biomass of recruits decreased sharply by 34% and 24% respectively in 896 µatm, and tended to remain constant as pCO2 was raised from 896 to 1681 µatm. Furthermore, recruits in 1681 ?atm, with comparable surface area as those in 896 µatm, produced fewer buds. These findings indicated that juvenile P. damicornis under high pCO2 would enhance electron transport rate and suppress asexual budding to favor skeletal and tissue growths, which are more critical for their persistence and survival in a high pCO2 environment. This work suggested the physiological plasticity of juvenile corals under short-term exposure to elevated pCO2.