764 resultados para Seawater hydroponic
Resumo:
Benthic foraminiferal Cd/Ca from an intermediate depth, western South Atlantic core documents the history of southward penetration of North Atlantic Intermediate Water (NAIW). Cd seawater estimates (CdW) for the last glacial are consistent with the production of NAIW and its export into the South Atlantic. At ~14.5 ka concurrently with the onset of the Bølling-Allerød to Younger Dryas cooling, the NAIW contribution to the South Atlantic began to decrease, marking the transition from a glacial circulation pattern to a Younger Dryas circulation. High CdW in both the deep North Atlantic and the intermediate South Atlantic imply reduced export of deep and intermediate water during the Younger Dryas and a significant decrease in northward oceanic heat transport. A modern circulation was achieved at ~9 ka, concurrently with the establishment of Holocene warmth in the North Atlantic region, further supporting a close linkage between deepwater variability and North Atlantic climate.
Resumo:
Studies of sulfur behavior in the water column and in sediments in river and seawater mixing zone were conducted in three areas of the Black and Azov Seas. These investigations showed constancy of sulfate concentrations versus chlorinity. Sulfur isotope composition in sulfates of surface, bottom, and pore waters depended on sulfate contents and salinity. The dependence was complicated by partial sulfate depletion in pore water due to bacterial sulfate reduction and also by alteration of isotope composition. Surface sediments in mixing zones are characterized by intensive sulfate reduction, great variability of content and isotopic composition of reduced sulfur, and a low mean isotopic fractionation factor of sulfur.
Resumo:
Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.