144 resultados para Sant 1,26
Resumo:
Among the groups of oceanic microfossils, only Radiolaria occur in abundances and preservation states sufficient to provide biostratigraphic control for restricted intervals within sediments recovered in Hole 1223A. The distribution of these microfossils has been divided into four major intervals, A-D. Radiolaria distribution Interval A occupies the depth range 0-3.0 meters below seafloor (mbsf), where the abundance of specimens is very low and preservation is poor. Radiolaria distribution Interval B occupies the depth range 3.02-7.1 mbsf. Radiolaria in Interval B are locally rare to abundant and well preserved, and assemblages range in age from pure early Eocene to early Eocene admixed with late Neogene taxa. Radiolaria distribution Interval C occupies the depth range 7.1-36.99 mbsf and is characterized by sediments either barren of microfossils or containing extremely rare early Eocene specimens. Radiolaria distribution Interval D occupies the depth range 36.99-38.7 mbsf (base of the recovered sedimentary section), where early Eocene Radiolaria are present in rare to common frequencies, but opal-A to opal-CT recrystallization has degraded the preservation state. The late Neogene assemblage of Radiolaria distribution Interval B is dated at 1.55-2.0 Ma, based on occurrences of Eucyrtidium matuyamai, Lamprocyclas heteroporos, and Theocorythium trachelium trachelium. The early Eocene assemblage of Radiolaria distribution Intervals B and D is somewhat problematically assigned to the Buryella clinata Zone.
Resumo:
Quaternary sediments were recovered at all five sites drilled during Ocean Drilling Program (ODP) Leg 189 in the Tasmanian Gateway. Two of these sites lie north of the present-day Subtropical Front (STF), and three sites lie south of the STF. Quaternary sediments recovered at Sites 1168, 1170, 1171, and 1172 were studied in detail to determine the calcareous nannofossil biostratigraphy and construct an age model for these sediments. The Pliocene/Pleistocene boundary was identified by the last occurrence (LO) of Discoaster brouweri at Site 1172 and approximated by the LO of Calcidiscus macintyrei at the other sites because of a lack of discoasterids. A hiatus encompassing the entire Helicosphaera sellii Zone was tentatively identified at Sites 1168 and 1172 by the coincident LOs of C. macintyrei and H. sellii. Similar hiatuses have been noted at ODP Site 1127 on the Great Australian Bight, Deep Sea Drilling Project Site 282 off the Tasman subcontinent, and ODP Site 1165 in Prydz Bay, Antarctica.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3? uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 ?atm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 ?atm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.
Resumo:
Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.
Resumo:
Assessing the habitability of deep-sea sediments undergoing compaction, compression, and subduction at convergent margins adds to our understanding of the limits of the terrestrial biosphere. In this work, we report exploratory biomarker data on sediments obtained at Ocean Drilling Program (ODP) Sites 1253, 1254, and 1255 during drilling at the Costa Rica subduction trench and forearc sedimentary wedge. The samples selected for postcruise biomarker analyses were located within intervals of potentially enhanced fluid flow within the décollement and sedimentary wedge fault zones (Sites 1254 and 1255) and within basal carbonates at the reference site (Site 1253). The passage of fluids that are geochemically distinct from ambient interstitial water provides a disequilibrium setting that may enhance habitability. Biomarker data show low levels of microbial biomass in subseafloor sediments sampled at the Costa Rica convergent margin as deep as ~370 meters below seafloor.
Resumo:
Herschel Island in the southern Beaufort Sea is a push moraine at the northwestern-most limit of the Laurentide Ice Sheet. Stable water isotope (d18O, dD) and hydrochemical studies were applied to two tabular massive ground ice bodies to unravel their genetic origin. Buried glacier ice or basal regelation ice was encountered beneath an ice-rich diamicton with strong glaciotectonic deformation structures. The massive ice isotopic composition was highly depleted in heavy isotopes (mean d18O: -33 per mil; mean dD: -258 per mil), suggesting full-glacial conditions during ice formation. Other massive ice of unknown origin with a very large d18O range (from -39 to -21 per mil) was found adjacent to large, striated boulders. A clear freezing slope was present with progressive depletion in heavy isotopes towards the centre of the ice body. Fractionation must have taken place during closed-system freezing, possibly of a glacial meltwater pond. Both massive ground ice bodies exhibited a mixed ion composition suggestive of terrestrial waters with a marine influence. Hydrochemical signatures resemble the Herschel Island sediments that are derived from nearshore marine deposits upthrust by the Laurentide ice. A prolonged contact between water feeding the ice bodies and the surrounding sediment is therefore inferred.
Resumo:
The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).