169 resultados para SOUTHERN-HEMISPHERE
Resumo:
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.
Resumo:
Recent intensification of wind-driven upwelling of warm upper circumpolar deep water (UCDW) has been linked to accelerated melting of West Antarctic ice shelves and glaciers. To better assess the long term relationship between UCDWupwelling and the stability of theWest Antarctic Ice Sheet, we present a multi-proxy reconstruction of surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula (WAP), through the Holocene. A combination of sedimentological, diatom and foraminiferal records are, for the first time, presented together to infer a decline in UCDW influence within Marguerite Bay through the early to mid Holocene and the dominance of cyclic forcing in the late Holocene. Extensive glacial melt, limited sea ice and enhanced primary productivity between 9.7 and 7.0 ka BP is considered to be most consistent with persistent incursions of UCDW through Marguerite Trough. From 7.0 ka BP sea ice seasons increased and productivity decreased, suggesting that UCDW influence within Marguerite Bay waned, coincident with the equatorward migration of the Southern Hemisphere Westerly Winds (SWW). UCDW influence continued through the mid Holocene, and by 4.2 ka BP lengthy sea ice seasons persisted within Marguerite Bay. Intermittent melting and reforming of this sea ice within the late Holocene may be indicative of episodic incursions of UCDW into Marguerite Bay during this period. The cyclical changes in the oceanography within Marguerite Bay during the late Holocene is consistent with enhanced sensitively to ENSO forcing as opposed to the SWW-forcing that appears to have dominated the early to mid Holocene. Current measurements of the oceanography of the WAP continental shelf suggest that the system has now returned to the early Holocene-like oceanographic configuration reported here, which in both cases has been associated with rapid deglaciation.
Resumo:
We compile and compare data for the last 150,000 years from four deep-sea cores in the midlatitude zone of the Southern Hemisphere. We recalculate sea surface temperature estimates derived from foraminifera and compare these with estimates derived from alkenones and magnesium/calcium ratios in foraminiferal carbonate and with accompanying sedimentological and pollen records on a common absolute timescale. Using a stack of the highest-resolution records, we find that first-order climate change occurs in concert with changes in insolation in the Northern Hemisphere. Glacier extent and inferred vegetation changes in Australia and New Zealand vary in tandem with sea surface temperatures, signifying close links between oceanic and terrestrial temperature. In the Southern Ocean, rapid temperature change of the order of 6°C occurs within a few centuries and appears to have played an important role in midlatitude climate change. Sea surface temperature changes over longer periods closely match proxy temperature records from Antarctic ice cores. Warm events correlate with Antarctic events A1-A4 and appear to occur just before Dansgaard-Oeschger events 8, 12, 14, and 17 in Greenland.
Resumo:
Ice cores provide a record of changes in dust flux to Antarctica, which is thought to reflect changes in atmospheric circulation and environmental conditions in dust source areas (Forster et al., 2007; Diekmann et al. 2000, doi:10.1016/S0031-0182(00)00138-3; Winckler et al., 2008, doi:10.1126/science.1150595; Reader et al., 1999, doi:10.1029/1999JD900033; Mahowald et al., 1999, doi:10.1029/1999JD900084; Petit et al., 1999, doi:10.1038/20859; 1990, doi:10.1038/343056a0 Delmonte et al., 2009, doi:10.1029/2008GL033382; Lambert et al., 2008, doi:10.1038/nature06763). Isotopic tracers suggest that South America is the dominant source of the dust (Grousset et al., 1992, doi:10.1016/0012-821X(92)90177-W; Basile et al., 1997, doi:10.1016/S0012-821X(96)00255-5; Gaiero et al., 2007, doi:10.1016/j.chemgeo.2006.11.003), but it is unclear what led to the variable deposition of dust at concentrations 20-50 times higher than present in glacial-aged ice (Petit et al., 1990, doi:10.1038/343056a0; Lambert et al., 2008, doi:10.1038/nature06763). Here we characterize the age and composition of Patagonian glacial outwash sediments, to assess the relationship between the Antarctic dust record from Dome C (refs Lambert et al., 2008, doi:10.1038/nature06763; Wolff et al., 2006, doi:10.1038/nature04614) and Patagonian glacial fluctuations (Sugden et al., 2005; McCulloch et al., 2005, doi:10.1111/j.0435-3676.2005.00260.x; Kaplan et al., 2008, doi:10.1016/j.quascirev.2007.09.013) for the past 80,000 years. We show that dust peaks in Antarctica coincide with periods in Patagonia when rivers of glacial meltwater deposited sediment directly onto easily mobilized outwash plains. No dust peaks were noted when the glaciers instead terminated directly into pro-glacial lakes. We thus propose that the variable sediment supply resulting from Patagonian glacial fluctuations may have acted as an on/off switch for Antarctic dust deposition. At the last glacial termination, Patagonian glaciers quickly retreated into lakes, which may help explain why the deglacial decline in Antarctic dust concentrations preceded the main phase of warming, sea-level rise and reduction in Southern Hemisphere sea-ice extent (Wolff et al., 2006, doi:10.1038/nature04614).
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
Resumo:
The response of the tropical ocean to global climate change and the extent of sea ice in the glacial nordic seas belong to the great controversies in paleoclimatology. Our new reconstruction of peak glacial sea surface temperatures (SSTs) in the Atlantic is based on census counts of planktic foraminifera, using the Maximum Similarity Technique Version 28 (SIMMAX-28) modern analog technique with 947 modern analog samples and 119 well-dated sediment cores. Our study compares two slightly different scenarios of the Last Glacial Maximum (LGM), the Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG), and Glacial Atlantic Ocean Mapping (GLAMAP 2000) time slices. The comparison shows that the maximum LGM cooling in the Southern Hemisphere slightly preceeded that in the north. In both time slices sea ice was restricted to the north western margin of the nordic seas during glacial northern summer, while the central and eastern parts were ice-free. During northern glacial winter, sea ice advanced to the south of Iceland and Faeroe. In the central northern North Atlantic an anticyclonic gyre formed between 45° and 60°N, with a cool water mass centered west of Ireland, where glacial cooling reached a maximum of >12°C. In the subtropical ocean gyres the new reconstruction supports the glacial-to-interglacial stability of SST as shown by CLIMAP Project Members (CLIMAP) [1981]. The zonal belt of minimum SST seasonality between 2° and 6°N suggests that the LGM caloric equator occupied the same latitude as today. In contrast to the CLIMAP reconstruction, the glacial cooling of the tropical east Atlantic upwelling belt reached up to 6°-8°C during Northern Hemisphere summer. Differences between these SIMMAX-based and published U37[k]- and Mg/Ca-based equatorial SST records are ascribed to strong SST seasonalities and SST signals that were produced by different planktic species groups during different seasons.
Resumo:
The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for epsilon Nd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic delta13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Variations in the sediment input to the Namaqualand mudbelt during the Holocene are assessed using an integrative terrestrial to marine, source to sink approach. Geochemical and Sr and Nd isotopic signatures are used to distinguish fluvial sediment source areas. Relative to the sediments of the Olifants River, craton outcrops in the northern Orange River catchment have a more radiogenic Sr and a more unradiogenic Nd isotopic signature. Furthermore, upper Orange River sediments are rich in heavier elements such as Ti and Fe derived from the chemical weathering of Drakensberg flood basalt. Suspension load signatures change along the Orange River's westward transit as northern catchments contribute physical weathering products from the Fish and Molopo River catchment area. Marine cores offshore of the Olifants (GeoB8323-2) and Orange (GeoB8331-4) River mouths show pulses of increased contribution of Olifants River and upper Orange River input, respectively. These pulses coincide with intervals of increased terrestrial organic matter flux and increased paleo-production at the respective core sites. We attribute this to an increase in fluvial activity and vegetation cover in the adjacent catchments during more humid climate conditions. The contrast in the timing of these wet phases in the catchment areas reflects the bipolar behavior of the South African summer and winter rainfall zones. While rainfall in the Orange River catchment is related to southward shifts in the ICTZ, rainfall in the Olifants catchment is linked to northward shifts in Southern Hemisphere Westerly storm tracks. The later may also have increased southern Benguela upwelling in the past by reducing the shedding of Agulhas eddies into the Atlantic. The high-resolution records of latitudinal shifts in these atmospheric circulation systems correspond to late Holocene centennial-millennial scale climate variability evident in Antarctic ice core records. The mudbelt cores indicate that phases of high summer rainfall zone and low winter rainfall zone humidity (at ca. 2.8 and 1 ka BP) may be synchronous with Antarctic warming events. On the other hand, dry conditions in the summer rainfall zone along with wet conditions in the winter rainfall zone (at ca 3.3, 2 and 0.5 ka BP) may be associated with Antarctic cooling events.
Resumo:
On 22 May 1985 the first balloon-borne ozonesonde was successfully launched by the staff of Georg-Forster-Station (70°46' S, 11°41' E). The following weekly ozone soundings mark the beginning of the continuous investigation of Germany to study the vertical ozone distribution in the southern hemisphere. In 1985 these ozone soundings have been the only record showing the change of vertical ozone distribution in the southern polar stratosphere in September and October. The regular ozone soundings from 1985 until 1992 are a valuable reference data set since the chemical ozone loss became a significant feature in the southern polar stratosphere. The balloon-borne soundings were performed at the upper air sounding facility of the neighbouring station Novolazarevskaya, just 2 km apart from Georg-Forster-Station. Till 1992, ozone soundings were taken without interruption. Afterwards, the ozone sounding program was moved to Neumayer-Station (70°39' S, 8°15' W) 750 km further west.
Resumo:
The Antarctic deep-water fauna of Polymastiidae and Suberitidae is revised using recently collected material from the Weddell Sea. The former family appeared to be more abundant and diverse than the latter family in the studied area. Seven species within five polymastiid genera and three species within three suberitid genera are described. Relatively high sponge abundance at two stations deeper than 4700 m was mainly constituted by a polymastiid species Radiella ant- arctica sp. nov. Previously, representatives of Radiella have never been found in the Antarctic. An eurybathic species, Polymastia invaginata , well known from the Antarctic and subantarctic, appeared to be especially abundant at less than 1000 m depth. Another eurybathic polymastiid species, Tentorium cf. semisuberites , known for its bipolar distribution, was the third abundant species at the depths between 1000-2600 m, with the highest density found at the deeper stations. Tentorium papillatum , endemic of the Southern Hemisphere, was registered only at a depth of about 1000 m. Other spe- cies studied were less abundant. Astrotylus astrotylus , the representative of the endemic Antarctic genus, was found exclusively deeper than 4500 m, often together with R. antarctica . Acanthopolymastia acanthoxa , the endemic deep- water Antarctic species, was registered at 3000 m. The discovery of suberitid Aaptos robustus sp. nov. at about 2300 m is the first signalization of Aaptos in the Antarctic and at such a considerable depth. The finding of Suberites topsenti deeper than 4700 m is also remarkable. In general the results achieved confirm the high degree of geographical ende- mism of the Antarctic deep-water sponge fauna and the eurybathic distribution of many Antarctic sponge species.
Resumo:
Precise relative sea level (RSL) data are important for inferring regional ice sheet histories, as well as helping to validate numerical models of ice sheet evolution and glacial isostatic adjustment. Here we develop a new RSL curve for Fildes Peninsula, South Shetland Islands (SSIs), a sub-Antarctic archipelago peripheral to the northern Antarctic Peninsula ice sheet, by integrating sedimentary evidence from isolation basins with geomorphological evidence from raised beaches. This combined approach yields not only a Holocene RSL curve, but also the spatial pattern of how RSL change varied across the archipelago. The curve shows a mid-Holocene RSL highstand on Fildes Peninsula at 15.5 m above mean sea level between 8000 and 7000 cal a BP. Subsequently RSL gradually fell as a consequence of isostatic uplift in response to regional deglaciation. We propose that isostatic uplift occurred at a non-steady rate, with a temporary pause in ice retreat ca. 7200 cal a BP, leading to a short-lived RSL rise of ~1 m and forming a second peak to the mid-Holocene highstand. Two independent approaches were taken to constrain the long-term tectonic uplift rate of the SSIs at 0.22-0.48 m/ka, placing the tectonic contribution to the reconstructed RSL highstand between 1.4 and 2.9 m. Finally, we make comparisons to predictions from three global sea level models.
Resumo:
orty-eight surface sediment samples from the southeast (SE) Pacific (25-53°S) are investigated for the determination of the spatial distribution of organic-walled dinoflagellate cysts along the western South American continental margin. Fifty-five different taxa are recorded and reflect oceanic or coastal assemblages. The oceanic assemblages are characterised by low cyst concentrations and the dominance of autotrophs, while the coastal assemblages generally contain a higher number of cysts, which are mainly produced by heterotrophic species. Highest cyst concentrations are observed in the active upwelling system offshore Concepción (35-37°S). Brigantedinium spp., Echinidinium aculeatum, Echinidinium granulatum/delicatum and cysts of Protoperidinium americanum dominate assemblages related to upwelling. Echinidinium aculeatum appears to be the best indicator for the presence of all year round active upwelling cells. Other protoperidinioid cysts may also occur in high relative abundances in coastal regions outside active upwelling systems, if the availability of nutrients, co-responsible for the presence/absence of their main food sources such as diatoms and other protists, is sufficient. The importance of nutrient availability as a determining environmental variable influencing cyst signals on a regional scale (SE Pacific) is demonstrated through statistical analyses of the data. Because of the importance of nutrients, uncertainties about the outcomes of quantitative sea-surface temperature (SST) reconstructions (Modern Analogue Technique) based on dinoflagellate cysts may arise, since no interaction between different hydrographical variables is considered in this approach. The combination of the SE Pacific surface sample dataset with other published cyst data from the Southern Hemisphere resulted in a database which includes 350 samples: the 'SH350 database'. This database is used to test the accuracy of the quantitative reconstructions by calculating and comparing the estimated versus observed values for each site. An attempt to perform quantitative SST reconstructions on the last 25 cal ka of site ODP1233 (41°S; 74°27'W) is made and again stresses the importance of other environmental variables such as nutrient availability in determining the dinoflagellate cyst assemblages.
Resumo:
Planktic foraminiferal faunas and modern analogue technique estimates of sea surface temperature (SST) for the last 1 million years (Myr) are compared between core sites to the north (ODP 1125, 178 faunas) and south (DSDP 594, 374 faunas) of the present location of the Subtropical Front (STF), east of New Zealand. Faunas beneath cool subtropical water (STW) north of the STF are dominated by dextral Neogloboquadrina pachyderma, Globorotalia inflata, and Globigerina bulloides, whereas faunas to the south are strongly dominated by sinistral N. pachyderma (80-95% in glacials), with increased G. bulloides (20-50%) and dextral N. pachyderma (15-50%) in interglacials (beneath Subantarctic Water, or SAW). Canonical correspondence analysis indicates that at both sites, SST and related factors were the most important environmental influences on faunal composition. Greater climate-related faunal fluctuations occur in the south. Significant faunal changes occur through time at both sites, particularly towards the end of the mid-Pleistocene climate transition, MIS18-15 (e.g., decline of Globorotalia crassula in STW, disappearance of Globorotalia puncticulata in SAW), and during MIS8-5. Interglacial SST estimates in the north are similar to the present day throughout the last 1 Myr. To the south, interglacial SSTs are more variable with peaks 4-7 °C cooler than present through much of the early and middle Pleistocene, but in MIS11, MIS5.5, and early MIS1, peaks are estimated to have been 2-4 °C warmer than present. These high temperatures are attributed to southward spread of the STF across the submarine Chatham Rise, along which the STF appears to have been dynamically positioned throughout most of the last 1 Myr. For much of the last 1 Myr, glacial SST estimates in the north were only 1-2 °C cooler than the present interglacial, except in MIS16, MIS8, MIS6, and MIS4-2 when estimates are 4-7 °C cooler. These cooler temperatures are attributed to jetting of SAW through the Mernoo Saddle (across the Chatham Rise) and/or waning of the STW current. To the south, glacial SST estimates were consistently 10-11 °C cooler than present, similar to temperatures and faunas currently found in the vicinity of the Polar Front. One interpretation is that these cold temperatures reflect thermocline changes and increased Circumpolar Surface Water spinning off the Subantarctic Front as an enhanced Bounty Gyre along the south side of the Chatham Rise. For most of the last 1 Myr, the temperature gradient across the STF has been considerably greater than the present 4 °C. During glacial episodes, the STF in this region did not migrate northwards, but instead there was an intensification of the temperature gradient across it (interglacials 4-11 °C; glacials 8-14 °C).
Resumo:
In recent years, temporal fluctuations in the abundance of C. d. davisiana have been used frequently as a highresolution stratigraphic and paleoenvironmental tool. The modern ecology and morphologic variation (temporal and geographic) of this radiolarian species is evaluated to ascertain its potential stratigraphic and paleoenvironmental significance. Statistics were obtained on the width and height of all C. d. davisiana segments from Pleistocene populations of differing ages from the Northern Hemisphere (Labrador Sea and Iceland-Faeroe Ridge) and Southern Hemisphere (Namibian shelf and Meteor Rise). Results reveal that segment height variations between and within populations are more conservative than segment width. The mean sizes of the thorax and first abdominal segment have distinguishable differences between C. d. davisiana found in the North and South Atlantic. All populations have no significant difference in first abdominal segment width, however, mean heights of this segment differ greatly between populations of the North and South Atlantic. Second abdominal segment sizes show no clear population grouping. Size differences in post-cephalic segment size of these populations would appear to be related to some isolation of gene pools and possibly unknown paleoenvironmental factors. Temporal changes in the postcephalic size of C. d. davisiana may be used to: (1) identify temporally equivalent peaks in abundance of the species in a given region, (2) possibly evaluate the degree of mixing of water'masses between regions, and (3) trace the initial spread of the species from its area of origin. Cleve's 1887 plankton samples, between Greenland and Spitzsbergen, were studied and used in conjunction with other data to make the following conclusions on the modern ecology of C. d. davisiana in the Arctic and Greenland-Norwegian Seas. (1) It is presently absent in surface water plankton samples, (2) it currently lives at depths below 500 m, where it is rare, (3) it does not live in the upper 200 m under Arctic ice but is rare at greater depths, (4) it is absent in the upper 200 m near permanent Greenland Sea ice where normal oceanic salinity prevails, and (5) it is most common in deep marginal fjord environments which may serve as a refuge for the species during interglacial periods. In the Atlantic Ocean, the abundance of C. d. davisiana does not exceed 1% of the assemblage between the Subtropical Convergence of each hemisphere. In the Norwegian and Labrador Seas the species may occasionally be in the range of 1-5% of the modern radiolarian assemblage and never more than 5% in the southern high latitudes. Apparently only in the modern Sea of Okhotsk, does the species presently occur in high abundance. We concur with Morley and Hays (1983) that increased abundances are likely caused by the development of a strong low-salinity surface layer associated with seasonal sea ice melting and a strong temperature minimum above warmer and higher salinity intermediate waters. Similar conditions were frequent during the Pleistocene in the high latitudes and its modern scarcity outside the Sea of Okhotsk must be related to the absence of the presently unique conditions in the latter region.