380 resultados para Rock Creek
Resumo:
At DSDP Sites 534 (Central Atlantic) and 535 and 540 (Gulf of Mexico), and in the Vocontian Basin (France), Lower Cretaceous deposits show a very pronounced alternation of limestone and marl. This rhythm characterizes the pelagic background sedimentation and is independent of detritic intercalations related to contour and turbidity currents. Bed-scale cycles, estimated to be 6000-26,000 yr. long, comprise major and minor units. Their biological and mineralogic components, burrowing, heavy isotopes C and O, and some geochemical indicators, vary in close correlation with CaCO3 content. Vertical changes of frequency and asymmetry of the cycles are connected with fluctuations of the sedimentation rate. Plots of cycle thickness ("cyclograms") permit detailed correlations of the three areas and improve the stratigraphic subdivision of Neocomian deposits at the DSDP sites. Small-scale alternations, only observed in DSDP cores, comprise centimetric to millimetric banding and millimetric to micrometric lamination, here interpreted as varvelike alternations between laminae that are rich in calcareous plankton and others rich in clay. The laminations are estimated to correspond to cycles approximately 1,3, and 13 yr. in duration. The cyclic patterns appear to be governed by an interplay of continental and oceanic processes. Oceanic controls express themselves in variations of the biogenic carbonate flux, which depends on variations of such elements as temperature, oxygenation, salinity, and nutrient content. Continental controls modulate the influxes of terrigenous material, organic matter, and nutrients derived from cyclic erosion on land. Among the possible causes of cyclic sedimentation, episodic carbonate dissolution has been ruled out in favor of climatic fluctuations with a large range of periods. Such fluctuations are consistent with the great geographic extension shown by alternation controls and with the continuous spectrum of scales that characterizes limestone-marl cycles. The climatic variations induced by the Earth's orbital parameters (Milankovitch cycles) could be connected to bed-interbed alternations.
Resumo:
Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/Sum S values (<= 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100-1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures <= 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in d34Ssulfide values (-1.5 to + 16.3 per mil) and variable additions of sulfide are explained by variable epsilon sulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/Sum S (>= 0.46) and variable d34Ssulfide (0.7 to 16.9 per mil). Negative d34Ssulfate-d34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide-sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.