513 resultados para Radiocarbon ages


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter provides a review of proxy data from a variety of natural archives sampled in the Wollaston Forland region, central Northeast Greenland. The data are used to describe long-term environmental and climatic changes. The focus is on reconstructing the Holocene conditions particularly in the Zackenberg area. In addition, this chapter provides an overview of the archaeological evidence for prehistoric occupation of the region. The Zackenberg area has been covered by the Greenland Ice Sheet several times during the Quaternary. At the Last Glacial Maximum (LGM, about 22,000 years BP), temperatures were much lower than at present, and only very hardy organisms may have survived in the region, even if ice-free areas existed. Marked warming at around 11,700 years BP led to ice recession, and the Zackenberg area was deglaciated in the early Holocene, prior to 10,100 years BP. Rapid early Holocene land emergence was replaced by a slight transgression in the late Holocene. During the Holocene, summer solar insolation decreased in the north. Following deglaciation of the region, summer temperatures probably peaked in the early to mid-Holocene, as indicated by the occurrence of a southern beetle species. However, the timing for the onset of the Holocene thermal maximum is rather poorly constrained because of delayed immigration of key plant species. During the thermal maximum, the mean July temperature was at least 2-3°C higher than at present. Evidence for declining summer temperatures is seen at around 5500, 4500 and 3500 years BP. The cooling culminated during the Little Ice Age that peaked about 100-200 years ago. The first plants that immigrated to the region were herbs and mosses. The first dwarf shrubs arrived in Northeast Greenland prior to 10,400 years BP, and dwarf birch arrived around 8800 years BP. The first people arrived about 4500 years BP, but the region was depopulated several times before the last people disappeared some time after 1823 AD, perhaps as a consequence of poor hunting conditions during the peak of the Little Ice Age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Quaternary paleoceanology of the North Allantic has been studied on the base of radiolaria data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colluvial deposits consisting of silts and loams were detected in several climatologically different areas of NE Tibet (3200-3700 m a.s.l.). Layering, distinct organic content and low content of coarse matter as well as location in the relief revealed an origin from low-energy slope erosion (hillwash). Underlying and intercalated paleosols were classified as Chernozems, Phaeozems, Regosols and Fluvisols. Fifteen radiocarbon datings predominant on charcoal from both colluvial layers and paleosols yielded ages between 8988 ± 66 and 3512 ± 56 uncal BP. Natural or anthropogenic factors could have been the triggers of the erosional processes derived. It remains unclear which reason was mainly responsible, due to controversial paleoclimatic and geomorphic records as well as insufficient archaeological knowledge from this region. Determinations of charcoal and fossil wood revealed the Holocene occurrence of tree species (spruce, juniper) for areas which nowadays have no trees or only few forest islands. Thus large areas of NE Tibet which are at present steppes and alpine pastures were forested in the past.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use planktonic oxygen isotope (d18O) records spanning the last 30,000 years (kyr) to constrain the magnitude and spatial pattern of glacial cooling in the upwelling environment of the eastern equatorial Pacific (EEP). Fourteen new downcore d18O records were obtained from surface-dwelling planktonic foraminifera Globigerinoides sacculifer and Globigerinoides ruber in eight cores from the upwelling tongue of the EEP. All sites have sedimentation rates exceeding 5 cm/kyr and, with one exception, lie above the modern depth of the foraminiferal lysocline. Sites directly underlying the cool band of upwelling immediately south of the equator record mean late Holocene (LH)-Last Glacial Maximum (LGM) d18O amplitudes ranging between 1.0 and 1.3 per mil. We estimate that mean sea surface temperatures (SST) in this region during the LGM were on average 1.5 ± 0.5°C lower than the LH. Larger d18O amplitudes are observed in sites north of the equator, indicating a spatial pattern of reduced meridional SST gradient across the equator during the LGM. This result is supported by comparison of Mg/Ca SST reconstructions from two sites straddling the equator. We interpret the reduction of this gradient during the LGM as evidence for a less intense cold tongue-Intertropical Convergence Zone (ITCZ) frontal system, a more southerly position of the ITCZ, and weaker southeast equatorial trades in the EEP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution planktonic foraminiferal census data from Santa Barbara Basin (Ocean Drilling Program hole 893A) demonstrate major assemblage switches between 25 and 60 ka that were associated with Dansgaard-Oeschger cycles. Stadials dominated by Neogloboquadrina pachyderma (sinistral), and Globigerinoides glutinata suggest a strong subpolar California Current influence, while interstadials marked by abundant N. pachyderma (dextral) and G. bulloides indicate a relative increase in subtropical countercurrent influence. Modern analog technique and transfer function (F-20RSC) temperature reconstructions support d18O evidence of large rapid (70 years or less) sea surface temperature shifts (3° to 5°C) between stadials and interstadials. Changes in the vertical temperature gradient and water column structure (thermocline depth) are recorded by planktonic faunal oscillations suggest bimodal stability in the organization of North Pacific surface ocean circulation. Santa Barbara Basin surface water demonstrates the rapid response of the California Current System to reorganization of North Pacific atmospheric circulation during rapid climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. While elevated ages in fluvially-transported organic matter are usually explained by erosion of soils and sediments, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and high carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River in conjunction with molecular markers for methane-producing land cover reflecting wetland extent in the watershed. We find that the Congo River has been discharging aged organic matter for several thousand years with increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter we infer that this process may cause a profound direct climate feedback currently underestimated in carbon cycle assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24°N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 µmol/kg. However, many of the cores collected south of 24°N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ~1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is suggested to be linked to glacier melting in consequence of rising temperatures occurring on the whole Tibetan Plateau during this time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An 1180-cm long core recovered from Lake Lyadhej-To (68°15'N, 65°45'E, 150 m a.s.l.) at the NW rim of the Polar Urals Mountains reflects the Holocene environmental history from ca. 11,000 cal. yr BP. Pollen assemblages from the diamicton (ca. 11,000-10,700 cal. yr BP) are dominated by Pre-Quaternary spores and redeposited Pinaceae pollen, pointing to a high terrestrial input. Turbid and nutrient-poor conditions existed in the lake ca. 10,700-10,550 cal. yr BP. The chironomid-inferred reconstructions suggest that mean July temperature increased rapidly from 10.0 to 11.8 °C during this period. Sparse, treeless vegetation dominated on the disturbed and denuded soils in the catchment area. A distinct dominance of planktonic diatoms ca. 10,500-8800 cal. yr BP points to the lowest lake-ice coverage, the longest growing season and the highest bioproductivity during the lake history. Birch forest with some shrub alder grew around the lake reflecting the warmest climate conditions during the Holocene. Mean July temperature was likely 11-13 °C and annual precipitation-400-500 mm. The period ca. 8800-5500 cal. yr BP is characterized by a gradual deterioration of environmental conditions in the lake and lake catchment. The pollen- and chironomid-inferred temperatures reflect a warm period (ca. 6500-6000 cal. BP) with a mean July temperature at least 1-2 °C higher than today. Birch forests disappeared from the lake vicinity after 6000 cal. yr BP. The vegetation in the Lyadhej-To region became similar to the modern one. Shrub (Betula nana, Salix) and herb tundra have dominated the lake catchment since ca. 5500 cal. yr BP. All proxies suggest rather harsh environmental conditions. Diatom assemblages reflect relatively short growing seasons and a longer persistence of lake-ice ca. 5500-2500 cal. yr BP. Pollen-based climate reconstructions suggest significant cooling between ca. 5500 and 3500 cal. yr BP with a mean July temperature 8-10 °C and annual precipitation-300-400 mm. The bioproductivity in the lake remained low after 2500 cal. yr BP, but biogeochemical proxies reflect a higher terrestrial influx. Changes in the diatom content may indicate warmer water temperatures and a reduced ice cover on the lake. However, chironomid-based reconstructions reflect a period with minimal temperatures during the lake history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sediment-sampling program was carried out in the Nares Strait region during the Nares 2001 Expedition to obtain cores for high-resolution palaeoceanographic studies of late Pleistocene-Holocene climate change. Long cores (>4 m) were obtained from basins near Coburg Island, Jones Sound, John Richardson Fiord off Kane Basin, and in northeastern Hall Basin. Short cores and grab samples were taken on shelves east and west of northern Smith Sound and in Kennedy Channel. Detailed studies of sediment texture, stable isotopes, microfossils and palynomorphs were made on the longest cores from Jones Sound and Hall Basin at the southern and northern ends of the Nares Strait region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental changes in the surface and bottom water layers of the Ingøydjupet Basin and history of Atlantic water inflow to the southwestern Barents Sea during the last 16 ka are reconstructed on the base of planktic and benthic foraminiferal assemblages. A multiproxy study of sediment cores PSh-5159R and PSh-5159N, including AMS 14C dating, provides time resolution of about 200 years for the deglaciation period, 100 years for Holocene, and 25-50 years for the last 400 years. Stable polar conditions with sea ice on the surface were typical for the early deglaciation period. Unstable bottom settings and onset of ice rafting marked Oldest Dryas. Cold Atlantic water inflow increased notably during the Boiling-Allerod interstadial nearby the site location and then decreased during the Younger Dryas. Early Holocene was characterized by abrupt warming in the bottom and surface water layers, especially ~9.7-7.6 ka BP. Stable conditions prevailed during Middle Holocene. Remarkable changes in the sea-surface temperature and bottom environments occurred during last 2.5 cal. ka BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that sediments accumulated in the Southern Novaya Zemlya Trench at both deglaciation and marine stages. Permanent sea ice sheet existed during the deglaciation, and glacier meltwater was intensely delivered to the bottom layer. Along with the dominant sediment supply from the Southern Island of Novaya Zemlya, southern continental sources also played a noticeable role at that stage. Seasonal sea ice freezing led to the formation of cold brines at the marine stage. Like paleoproductivity, these processes were irregular. Dissolution of calcareous benthic foraminiferal tests considerably intensified after about 7 ka BP owing to a stronger Atlantic water advection into the Western Arctic and consequent increase in paleoproductivity, whereas the relative role of southern sedimentary provenances decreased. Sedimentation rates were constant (45 cm/ka) during the entire marine stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.