521 resultados para Pygoscelis antarcticus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high resolution mixed carbonate and siliciclastic sequence from DSDP Site 594 contains a detailed record of climate change in the late Pliocene. The sequence can be accurately dated by the LAD of Nitzschia weaveri, the LAD of Thalassiosira insigna, the LAD of T. vulnifica and the LAD of T. kolbei diatom datums. Carbonate content and delta18O signatures provide added resolution and place the sequence between isotope stage 100 and 92. The sequence contains well-preserved and diverse dinoflagellate cyst floras. Use of principal component (PCA) and canonical correspondence analyses (CCA) identifies changes in the assemblages that principally reflect warming and cooling trends. Species association with warmer climates included Impagidinium patulum, I. paradoxum and I. sp. cf. paradoxum while those from cooler climates include Invertecysta tabulata and I. velorum. CCA is shown to be a valuable method of determining the past environmental preferences of extinct species such as I. tabulata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biostratigraphic distribution and qualitative relative abundance of Quaternary-Pliocene diatoms from Ocean Drilling Program Leg 188, Sites 1165 (64.380°S, 67.219°E) and 1166 (67.696°S, 74.787°E) offshore from East Antarctica, are documented in this report. The upper ~50 meters below seafloor (mbsf) of Hole 1165B consists of brown diatom-bearing silty clay spanning the upper Pleistocene to lower Pliocene. The diatom stratigraphy indicates a disconformity at ~17.1 mbsf of 0.5- to 0.6-m.y. duration. The integration of biostratigraphic and magnetostratigraphic data identified other disconformities at ~6.0, 14.4, 15.6, and 16.0 mbsf, but the duration of these hiatuses cannot be resolved through diatom biostratigraphy. In Hole 1166A, a narrow interval of diatomaceous Quaternary sediment is identified in the upper 2.92 mbsf and dated biostratigraphically at <0.38 Ma. The remaining Quaternary-Pliocene section is dominated by diamicton, except at ~114 mbsf, where two thin diatomaceous beds are present. The lower bed is ~65 cm thick, 2.5-2.7 to 2.7-3.2 Ma in age, and possibly disconformably overlain by the upper bed, which is ~15 cm thick and 1.8-2.0 to 2.1-2.5 Ma in age. The Pliocene assemblages in Hole 1166A contain components of both Southern Ocean and Antarctic continental shelf (Ross Sea) diatom floras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biostratigraphic distribution and abundance of Eocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program Leg 120 Holes 747A, 748A, 748B, 749B, and 751A on the Central Kerguelen Plateau. Well-preserved silicoflagellates are reported here from the middle Eocene Dictyocha grandis Zone to the Pleistocene Distephanus speculum speculum Zone. Assemblage diversity and abundance is variable, with many intervals either barren of silicoflagellates or containing only limited numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples were examined for diatoms from 22 holes at 11 sites cored by ODP Leg 119 on the Kerguelen Plateau and in Prydz Bay, East Antarctica. Diatoms were observed in Oligocene through Holocene sediments recovered from the Kerguelen Plateau. The diatom flora from the Kerguelen Plateau is characterized by species such as Azpeitia oligocenica, Rocella gelida, Rocella vigilans, and Synedra jouseana in the Oligocene and Crucidenticula nicobarica, Denticulopsis hustedtii, Nitzschia miocenica, and Thalassiosira miocenica in the Miocene. This somewhat cosmopolitan assemblage gives way to a Pliocene and Holocene assemblage characterized by species such as Nitzschia kerguelensis, Thalassiosira inura, and Thalassiosira torokina, which are endemic to the Southern Ocean region. Samples examined from Prydz Bay are generally devoid of diatoms. The exception is Site 739, where diatoms occur sporadically in lower Oligocene and upper Miocene through Quaternary sediments. The Leg 119 diatom biostratigraphic results allow the development of a stratigraphic framework for the Indian sector of the Southern Ocean. This diatom zonation integrates diatom zonations developed previously for other sectors of the Southern Ocean. The zonation proposed here is based on biostratigraphic events of both geographically widespread and endemic species calibrated to the paleomagnetic stratigraphy. As such, this zonation has application throughout the Southern Ocean and allows correlation from the southern high latitudes to the low latitudes.