856 resultados para Palmetto Sites Program
Resumo:
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.
Resumo:
Diverse and well-preserved planktonic foraminifers were recovered from six sites (834-839) drilled in the Lau Basin. Planktonic faunas from the Tongan Platform sites varied from those of the Lau Basin sites by being less well preserved (Site 840) to being very poorly preserved and very sparse (Site 841); at Site 841 most samples were barren. All sites penetrated a volcaniclastic sequence in which thick ash beds were encountered; foraminifer populations within the ash beds were often very small, making it difficult to obtain biostratigraphic data. No hiatuses were encountered in the upper Miocene to Pleistocene sections of the Lau Basin, but a possible break occurs at Site 840 on the Tongan Platform. Site 834 penetrated through a Quaternary-Pliocene sequence overlying basaltic basement, and topmost Miocene (Zone N17B) sediments interbedded within the volcanic sequence. Site 835 penetrated into the lower Pliocene (Zones N19 to N19-20). Site 836 penetrated the shortest section, with Zone N22 {Globorotalia (Truncorotalia) crassaformis hessi Subzone) directly overlying basalts. Site 837 penetrated into the basal part of Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) overlying basalt. Site 838 failed to encounter basalts, with the oldest sediment being from Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone). Site 839, within the same basin as Site 838, located Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) sediments directly overlying igneous basement. Site 840 penetrated into the upper Miocene Zone N17A without encountering any major unconformity. Site 841, studied mainly from core-catcher samples, penetrated a Quaternary to questionable upper Miocene sequence that was in fault contact with middle Miocene (Zones N8 to N9) sediments. For the Lau Basin sites, reworking was encountered only in Sites 834 and 835. Site 834 was drilled adjacent to the Lau Ridge, on which are developed numerous reef al and shallow-water environments, where erosional conditions could have been expected during sea-level lowstands. Site 835 was drilled in a narrow basin that has been remote from these erosional influences; slumping and erosion of material from the adjacent basin slopes appears to have been the source of the reworking. For the Tongan Platform sites, reworking was observed only in the lower part of the upper Miocene section at Site 841, where late Eocene larger foraminifers are present in conglomerates and grits. The presence of Globorotalia (Globorotalia) multicamerata and small specimens of Sphaeroidinellopsis spp. in the Pleistocene of Site 840 may indicate reworking, but this is not clear. Unit I, which marks a reduction in volcanic activity in the Lau Basin, ranges in age from the lower part of Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) at Sites 834 and 835, to within Zone N22 (Globorotalia crassaformis hessi Subzone) at Sites 836 to 838, and within the upper part of Zone N22 (Bolliella praeadamsi Subzone) at Site 839. Units II and III are generally represented by thick to very thick ash beds, which generally contain low-diversity and often poorly preserved assemblages. Igneous sources seem to have remained important contributors of sediment up to the present day.
Resumo:
The sediments recovered during Leg 138 provide a remarkable opportunity to improve the geological time scale of the late Neogene. We have developed new time scales in the following steps. First, we constructed age models on the basis of shipboard magnetostratigraphy and biostratigraphy, using the time scale of Berggren, Kent, and Flynn (1985). Second, we refined these age models using shipboard GRAPE density measurements to provide more accurate correlation points. Third, we calibrated a time scale for the past 6 m.y. by matching the high-frequency GRAPE density variations to the orbital insolation record of Berger and Loutre (1991); we also took into account d18O records, where they were available. Fourth, we generated a new seafloor anomaly time scale using our astronomical calibration of C3A.n (t) at 5.875 Ma and an age of 9.639 Ma for C5n.1n (t) that is based on a new radiometric calibration (Baksi, 1992). Fifth, we recalibrated the records older than 6 Ma to this new scale. Finally, we reconsidered the 6- to 10-Ma interval and found that this could also be partially tuned astronomically.
Resumo:
Benthic foraminifers from Ocean Drilling Program Leg 199 Holes 1215A, 1220B, and 1221C were examined across the Paleocene/Eocene boundary. Assemblages were studied in 240 samples. The benthic foraminiferal extinction event that correlates with the Paleocene/Eocene epoch boundary was recognized at these sites. Benthic assemblages before the event are characterized by high diversity, but those after the event are low in diversity. An assemblage of agglutinated foraminifers without carbonate cement was recognized at Sites 1220 and 1221. These assemblages were typically found after the event. The discovery of such agglutinated assemblages has never been reported before at this boundary.
Resumo:
Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (d13C) was temporarily reduced for ~100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum d18O values and reduction in test size-d13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera.
Resumo:
Compaction curves for 11 samples from the mixed sediments and calcareous chalk with clay from the Caribbean Sites 999 and 1001 are discussed with reference to compaction curves for calcareous ooze and chalk of the Ontong Java Plateau (Leg 130). The burial history is discussed from preconsolidation data and present burial conditions and suggests a removal of ~400 m of sediment at the hiatus 166 meters below seafloor (mbsf) at Site 1001. This interpretation predicts a previous burial to >500 mbsf for depth intervals containing microstylolites, which corresponds to observations at Sites 999 and 807 (Ontong Java Plateau). Thus, data from three sites from two widely separate regions indicate that microstylolites in carbonates form at minimum burial depths deeper than 500 m. No direct link between formation of microstylolites and cementation was found, suggesting that dissolution and precipitation are not necessarily related. Porosity rebound during core retrieval could not be detected for soft sediments, whereas a porosity rebound of ~2% was deduced for deeper, cemented intervals. Comparing the compaction curves, two distinct rates of porosity loss are noted: (1) samples dominated by clay (>45% insoluble residue) compact at a higher rate than samples dominated by fine-grained carbonate and (2) fine-grained carbonate supported samples (with <45% insoluble residue) compact at the same rate irrespective of the content of nonsupporting microfossils or pore-filling clay.
Resumo:
A generally rich radiolarian fauna ranging in age from Quaternary to early Eocene (Zone RP7) was found at five of the eight sites drilled during Ocean Drilling Program (ODP) Leg 199. Of particular interest are the stratigraphically complete assemblages that range in age from middle Miocene (Zone RN5) to early Eocene (Zone RP7), composites of Sites 1218, 1219, and 1220. At the same sites, multisensor track (MST) data show consistent cycles in gamma ray attenuation density, color, and carbonate content that can be correlated on a submeter scale from the early Miocene to early Eocene. In addition, the magnetic reversal records from these three sites allow construction of an absolute timescale. A series of 305 radiolarian morphologic first and last occurrences and evolutionary transitions for radiolarians were determined and correlated directly with the accompanying MST and paleomagnetic data, resulting in a detailed and accurate dating of events. Since many of the bioevents are found at more than one site, it was also possible to test their reliability within the study area. Twelve new species are described: Calocycletta (Calocycletta) anekathen, Dorcadospyris anastasis, Dorcadospyris copelata, Dorcadospyris cyclacantha, Dorcadospyris ombros, Dorcadospyris scambos, Eucyrtidium mitodes, Theocyrtis careotuberosa, Theocyrtis perpumila, Theocyrtis perysinos, Theocyrtis setanios, and Thyrsocyrtis (Pentalacorys) orthotenes.
Resumo:
In this manuscript, we present rock magnetic results of samples recovered during Leg 183. The Leg 183 cores were recovered from six drill sites and display variable rock magnetic properties. The differences in the rock magnetic properties are a function of mineralogy and alteration. Cretaceous subaerial basalt samples with titanomagnetite exhibit a strong Verwey transition in the vicinity of 110 K and have frequency-dependent susceptibility curves that resemble those of synthetic (titano) magnetites. These results are in good agreement with the thermomagnetic characteristics where titanomagnetites with Curie temperatures of ~580°C were identified. The hysteresis ratios suggest that the bulk magnetic grain size is in the psuedo-single-domain boundary. These subaerial basalts experienced high-temperature oxidation and maintained reliable paleomagnetic records. In contrast, the 34-Ma submarine pillow basalts do not show the Verwey transition during the low-temperature experiments. Thermomagnetic analysis shows that the remanent magnetization in this group is mainly carried by a thermally unstable mineral titanomaghemite. The frequency-dependent relationships are opposite of those from the first group and show little sign of titanomagnetite characteristics. Rocks from the third group are oxidized titanomagnetites and have multiple magnetic phases. They have irreversible thermaomagnetic curves and hysteresis ratios clustering toward the multidomain region (with higher Hcr/Hc ratios). The combined investigation suggests that variations in magnetic properties correlate with changes in lithology, which results in differences in the abundance and size of magnetic minerals. The rock magnetic data on Leg 183 samples clearly indicate that titanomagnetite is the dominant mineral and the primary remanence carrier in subaerial basalt. The generally good magnetic stability and other properties exhibited by titanomagnetite-bearing rocks support the inference that the ChRM isolated from the Cretaceous sites were acquired during the Cretaceous Normal Superchron. The stable inclinations identified from these samples are therefore useful for future tectonic studies.
Resumo:
An investigation of the isotopic composition of the interstitial waters was conducted at Sites 1071, 1072, and 1073 on the New Jersey continental shelf and slope during Ocean Drilling Program Leg 174A. Sites 1071 and 1072 are closely spaced drill holes on the continental shelf located ~130 km from the shoreline in 88 and 98 m of water, respectively. Site 1073 is located on the continental slope in 640 m water and penetrated a total of 664 m of sediment of which ~520 m is Quaternary age. A total of 125 oxygen and hydrogen isotopic analyses of pore fluids are presented from all three sites. Twelve strontium isotopic ratios are reported from Site 1071.
Resumo:
Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.
Resumo:
Pliocene and Pleistocene sediments of the Oman margin and Owen Ridge are characterized by continuous alternation of light and dark layers of nannofossil ooze and marly nannofossil ooze and cyclic variation of wet-bulk density. Origin of the wet-bulk density and color cycles was examined at Ocean Drilling Program Site 722 on the Owen Ridge and Site 728 on the Oman margin using 3.4-m.y.-long GRAPE (gamma ray attenuation) wet-bulk density records and records of sediment color represented as changes in gray level on black-and-white core photographs. At Sites 722 and 728 sediments display a weak correlation of decreasing wet-bulk density with increasing darkness of sediment color. Wet-bulk density is inversely related to organic carbon concentration and displays little relation to calcium carbonate concentration, which varies inversely with the abundance of terrigenous sediment components. Sediment color darkens with increasing terrigenous sediment abundance (decreasing carbonate content) and with increasing organic carbon concentration. Upper Pleistocene sediments at Site 722 display a regular pattern of dark colored intervals coinciding with glacial periods, whereas at Site 728 the pattern of color variation is more irregular. There is not a consistent relationship between the dark intervals and their relative wet-bulk density in the upper Pleistocene sections at Sites 722 and 728, suggesting that dominance of organic matter or terrigenous sediment as primary coloring agents varies. Spectra of wet-bulk density and optical density time series display concentration of variance at orbital periodicities of 100, 41, 23, and 19 k.y. A strong 41-k.y. periodicity characterizes wet-bulk density and optical density variation at both sites throughout most of the past 3.4 m.y. Cyclicity at the 41-k.y. periodicity is characterized by a lack of coherence between wet-bulk density and optical density suggesting that the bulk density and color cycles reflect the mixed influence of varying abundance of terrigenous sediments and organic matter. The 23-k.y. periodicity in wet-bulk density and sediment color cycles is generally characterized by significant coherence between wet-bulk density and optical density, which reflects an inverse relationship between these parameters. Varying organic matter abundance, associated with changes in productivity or preservation, is inferred to more strongly influence changes in wet-bulk density and sediment color at this periodicity.
Resumo:
During the late early Miocene to early middle Miocene, the Owen Ridge was uplifted to a sufficient height as to be above the realm of turbidite deposition. Monsoonal-induced upwelling appears to have been initiated during the Miocene. On the Oman Margin, the effect of upwelling on the microplankton was established by the middle Miocene. However, the effects of upwelling on the Owen Ridge region were not realized until later, in the early late Miocene. A transition in the upwelling regime took place between the Pliocene and Pleistocene. While the Miocene and Pliocene sediments are dominated by the siliceous component, the Pleistocene sediments seem to be dominated by the calcareous component.
Resumo:
Conductivity of 54 basalt samples from ODP Sites 768 and 770 was measured as a function of temperature and fluid salinity. Porosity was also measured for all samples, and cation exchange capacity was measured for 46 of the samples. Porosity measurements indicated that porosity is underestimated for basalts like these, unless one uses extensive drying at high vacuum. At salinities greater than 29 ppt, and throughout the range of salinity and temperatures likely in situ, sample conductivity (Co) is controlled by porosity (phi) according to the Archie relation Co = 0.22*Cw phi*1-3 (orFF = 4.5/f1.3), where Cw is conductivity of the pore fluids and FF = Cw/CO is the formation factor. At lower salinity, clay-surface conduction or microcrack conduction may dominate. We are unable to distinguish reliably between the two mechanisms, but we do detect their effects subtly at high salinity and strongly at low salinity.
Resumo:
Nineteen trace elements, including seven rare earth elements (REE's), and 10 major and minor elements in 76 sediment samples from Sites 798 (Oki Ridge) and 799 (Yamato Trough) were determined by means of instrumental neutron activation analysis and X-ray fluorescence spectrometry. Most REE patterns (chondrite-normalized) of the sediments from both sites were nearly identical to the patterns of terrigenous materials. The cerium anomaly (slightly positive) frequently appeared in REE patterns of the sediments (200-750 mbsf) from Site 799. Cerium may be selectively incorporated into the sediments with hydrogenous manganese precipitation. However, the degree of the anomaly was not well correlated with manganese content, suggesting that cerium may behave as a trivalent REE (like the other REE's) during diagenesis while manganese is transported in the sediment column accompanied by reduction to a lower oxidation state. The Th/Sc ratio of the sediments from Sites 798 and 799 tended to decrease with penetration depth. Such a depth profile may indicate a decrease in basic volcanism activities from the Pliocene (Site 798) and Miocene (Site 799). The La/Yb ratio and degree of europium anomaly also varied with depth, which may imply that two or more components with different REE patterns were supplied throughout sedimentation at sites in the Japan Sea.
Resumo:
Past changes in sea-surface productivity in the Oyashio Current are evaluated on the basis of abundances of biological constituents in sediments from Leg 186 sites. Organic carbon contents at Sites 1150 and 1151 are moderate (0.5 to 1.5 wt%) and have an algal origin as indicated by low C/N ratios (<10) and by carbon isotopic compositions ranging from -23.4 to -21.3. A decreasing trend in organic carbon contents, carbon isotope ratios, and C/N ratios occurs with depth at both sites, probably as a consequence of diagenetic degradation of organic matter. Mass accumulation rates (MARs) determined for organic carbon and carbonates at Sites 1150 and 1151 show an abrupt increase between ~5 and 7 Ma. Similar results have been reported for sites in the Indian Ocean and the Pacific Ocean for the same time interval. As it has been previously suggested, the observed increase in MAR for both carbonate and organic carbon at Leg 186 sites probably resulted from augmented nutrient supply either from continental sources or from a more vigorous ocean circulation.