407 resultados para Ni-Cr-Mo-Ti


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace elements, mineral chemistry, and Sr-Nd isotope ratios are reported for representative igneous rocks of Ocean Drilling Program Sites 767 and 770. The basaltic basement underlying middle Eocene radiolarianbearing red clays was reached at 786.7 mbsf and about 421 mbsf at Sites 767 and 770, respectively. At Site 770 the basement was drilled for about 106 m. Eight basaltic units were identified on the basis of mineralogical, petrographical, and geochemical data. They mainly consist of pillow lavas and pillow breccias (Units A, B, D, and H), intercalated with massive amygdaloidal lavas (Units Cl and C2) or relatively thin massive flows (Unit E). Two dolerite sills were also recognized (Units F and G). All the rocks studied show the effect of low-temperature seafloor alteration, causing almost total replacement of olivine and glass. Calcite, clays, and Fe-hydroxides are the most abundant secondary phases. Chemical mobilization due to the alteration processes has been evaluated by comparing elements that are widely considered mobile during halmyrolysis (such as low-field strength elements) with those insensitive to seafloor alteration (such as Nb). In general, MgO is removed and P2O5 occasionally enriched during the alteration of pillow lavas. Ti, Cs, Li, Rb, and K, which are the most sensitive indicators of rock/seawater interaction, are generally enriched. The most crystalline samples appear the least affected by chemical changes. Plagioclase and olivine are continuously present as phenocrysts, and clinopyroxene is confined in the groundmass. Textural and mineralogical features as well as crystallization sequences of Site 770 rocks are, in all, analogous to typical mid-ocean-ridge basalts (MORBs). Relatively high content of compatible trace elements, such as Ni and Cr, indicate that these rocks represent nearly primitive or weakly fractionated MORBs. All the studied rocks are geochemically within the spectrum of normal MORB compositional variation. Their Sr/Nd isotopic ratios plot on the mantle array (87Sr/87Sr 0.70324-0.70348 with 143Nd/144Nd 0.51298-0.51291) outside the field of Atlantic and Pacific MORBs. However, Sr and Nd isotopes are typical of both Indian Ocean MORBs and of some back-arc basalts, such as those of Lau Basin. The mantle source of Celebes basement basalts does not show a detectable influence of a subduction-related component. The geochemical and isotopic data so far obtained on the Celebes basement rocks do not allow a clear discrimination between mid-ocean ridge and back-arc settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical relationships between physical properties determined non-destructively by core logging devices and calibrated by carbonate and opal measurements determined on discrete samples allow extraction of carbonate and opal records from the non-destructive measurements in biogenic settings. Contents of detrital material can be calculated as a residual. For carbonate and opal the correlation coefficients (r) are 0.954 and ?0.916 for sediment density, ?0.816 and 0.845 for compressional-wave velocity, 0.908 and ?0.942 for acoustic impedance, and 0.886 and ?0.865 for sediment color (lightness). Carbonate contents increase in concert with increasing density and acoustic impedance, decreasing velocity and lighter sediment color. The opposite is true for opal. The advantages of deriving the sediment composition quantitatively from core logging are: (i) sampling resolution is increased significantly, (ii) non-destructive data can be gathered rapidly, and (iii) laboratory work on discrete samples can be reduced. Applied to paleoceanographic problems, this method offers the opportunity of precise stratigraphic correlations and of studying processes related to biogenic sedimentation in more detail. Density is most promising because it is most strongly affected by changes in composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic phosphorite crusts from the shelf off Peru (9°40°S to 13°30°S) consist of a facies with phosphatic coated grains covered by younger phosphatic laminite. The crusts are composed of carbonate fluorapatite, which probably formed via an amorphous precursor close to the sediment water interface as indicated by low F/P2O5 ratios, Sr and Ca isotopes, as well as rare earth element patterns agreeing with seawater-dominated fluids. Small negative Ce anomalies and U enrichment in the laminite suggest suboxic conditions close to the sediment-water interface during its formation. Increased contents of chalcophilic elements and abundant sulfide minerals in the facies with phosphatic coated grains as well as in the laminite denote sulfate reduction and, consequently, point to episodical development of anoxic conditions during phosphogenesis. The Peruvian phosphorites formed episodically over an extended period of time lasting from Middle Miocene to Pleistocene. Individual phosphatic coated grains show a succession of phosphatic layers with varying contents of organic matter and sulfide-rich phosphatic layers. Coated grains supposedly formed as a result of episodic suspension caused by high turbulence and shifting redox conditions. Episodic anoxia in the pore water induced pyritization in the outermost carbonate fluorapatite layer. Phosphatic coated grains were later transported to the place of crust formation, where subsequent laminite formation was favored under lower energy conditions. A similar succession of phosphatic layers with varying contents of organic matter and sulfide-rich layers in the laminite suggests a formation mechanism analogous to that of individual coated grains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and d7Li values. The sediment piles in front of the Mariana and South Sandwich arcs largely consist of pelagic sediments (clays and oozes). The pelagic clays have high Li contents (up to 57.3 ppm) and Li isotope compositions ranging from +1.3? to +4.1?. The oozes have lower Li contents (7.3-16 ppm) with d7Li values of the diatom oozes from the South Sandwich lower (+2.8? to +3.2?) than those of the radiolarian oozes from the Mariana arc (+8.1? to +14.5?). Mariana sediment also contains a significant portion of volcanogenic material, which is characterised by a moderate Li content (14 ppm) and a relatively heavy isotope composition (+6.4?). Sediments from the Banda and Lesser Antilles contain considerable amounts of continental detritus, and have high Li contents (up to 74.3 ppm) and low d7Li values (around 0?), caused by weathering of continental bedrock. East Sunda sediments largely consist of calcareous oozes. These carbonate sediments display intermediate to high Li contents (2.4-41.9 ppm) and highly variable d7Li values (-1.6? to +12.8?). Basaltic oceanic crust samples from worldwide DSDP and ODP drill cores are characterised by enrichment of Li compared to fresh MORB (6.6-33.1 vs. 3.6-7.5 ppm, respectively), and show a large range in Li isotope compositions (+1.7? to +11.8?). The elemental and isotopic enrichment of Li in altered basalts is due to the uptake of isotopically heavy seawater Li during weathering. However, old oceanic crust samples from Sites 417/418 exhibit lighter Li isotope compositions compared to young basaltic crust samples from Sites 332B and 504B. This lighter Li isotope signature in old crust is unexpected and further research is needed to explore this issue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results of a microprobe investigation of fresh and least-deformed and metamorphosed gabbroic rocks from Leg 118, Hole 735B, drilled on the east side of the Atlantis II Fracture Zone, Southwest Indian Ridge. This rock collection comprises cumulates ranging from troctolites to olivine-gabbro and olivine-gabbronorite to ilmenite-rich ferrogabbros and ferrogabbronorites. As expected, the mineral chemistry is variable and considerably expands the usual oceanic reference spectrum. Olivine, plagioclase, and clinopyroxene are present in all the studied samples. Orthopyroxene and ilmenite, although not rare, are not ubiquitous. Olivine compositions range from Fo85 to Fo30, while plagioclase compositions vary from An70 to An27. Mg/(Mg + Fe2+) of clinopyroxene (mostly diopside to augite) varies from 0.88 to 0.54. Mg/(Mg + Fe2+) of orthopyroxene varies from 0.84 to 0.50. These minerals are not significantly zoned. All mineralogical data indicate that fractional crystallization is an important factor for the formation of cumulates. However, sharp contacts, interpreted as layering boundaries or intrusion margins, suggest polycyclic fractionation of several magma batches of limited volumes. Calculated compositions of magmas in equilibrium with the most magnesian mineral samples at the bottom of the hole represent fractionated liquids through separation of olivine, plagioclase, and clinopyroxene at moderate to low pressures (less than 9 kb). Crystallization of orthopyroxene and ilmenite occurs in the most differentiated liquids. Mixing of magmas having various compositions before entering the cumulate zone is another mechanism necessary to explain extremely differentiated iron-rich gabbros formed in this slow-spreading ridge environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents materials on composition and texture of weakly serpentinized ultrabasic rocks from the western and eastern walls of the Markov Deep (5°30.6'-5°32.4'N) in the rift valley of the Mid-Atlantic Ridge. Predominant harzburgites with protogranular and porphyroclastic textures contain two major generations of minerals: the first generation composes the bulk of rocks and consists of Ol_89.8-90.4 + En_90.2-90.8 + Di_91.8 + Chr (Cr#32.3-36.6, Mg#67.2-70.0), while the second generation composes very thin branching veinlets and consists of PlAn_32-47 + Ol_74.3-77.1 + Opx_55.7-71.9 + Cpx_67.5 + Amph_53.7-74.2 + Ilm. Syndeformational olivine neoblasts in recrystallization zones are highly magnesian. Concentrations and covariations of major elements in harzburgites indicate that these rocks are depleted in mantle residues (high Mg# of minerals and whole-rock samples and low in CaO, Al2O3, and TiO2) that are significantly enriched in trace HFSE and REE (Zr, Hf, Y, LREE, and all REE). Mineralogy and geochemistry of harzburgites were formed by interaction of mantle residues with hydrous, strongly fractionated melts that impregnated them. Mineral composition of veinlets in harzburgites and mineralogical-geochemical characteristics of related plagiogranites and gabbronorites suggest that these plagiogranites were produced by melt residuals after crystallization of gabbronorites. Modern characteristics of harzburgites were shaped by the following processes: (i) partial melting of mantle material simultaneously with its subsolidus deformations, (ii) brittle-plastic deformations associated with cataclastic flow and recrystallization, and (iii) melt percolation along zones of maximal stress relief and interaction of this melt with magnesian mantle residue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral compositions of the plagioclase-bearing ultramafic tectonites dredged and cored seaward of the continental slope of the Galicia margin (Leg 103, Site 637) were compared to mineral compositions from onshore low-pressure ultramafic bodies (southeastern Ronda, western Pyrenees, and Lizard Point), on the basis of standardized (30-s counting time) probe analyses. The comparison was extended to some plagioclase-free harzburgites related to ophiolites (Santa Elena in Costa Rica, north Oman, and the Humboldt body in New Caledonia) on the basis of new analytical data and data from the literature. The behavior of Cr, Na, Al, Mg, Fe, Ni, and Ti in olivine, pyroxenes, and spinel was examined in order to distinguish between the effects of partial melting and mineral facies change, from the spinel to plagioclase stability fields. The peridotite from the Galicia margin appears slightly depleted in major incompatible elements and experienced a minor partial melting. However, it experienced large scale but heterogeneous recrystallization in the plagioclase field. These features are very similar to those observed in Ronda, whereas in the western Pyrenees the minerals exemplify a very minor partial-melting event (or none at all) and have retained compositions corresponding to those of the relatively high-pressure Seiland sub facies. The minerals from the Lizard Point peridotite have characteristics (low Mg/(Mg + Fe) ratio; high Cr/(Cr + Al) ratio in spinel) more related to cumulate from a differentiated tholeiitic melt than related to ophiolitic tectonite. Diffusion profiles of Al and Cr across pyroxenes and spinel show that recrystallization features occurred at different speeds or temperatures in the different bodies. The pyroxenes from Ronda would have experienced recrystallization about 14 times faster than the peridotite from the Galicia margin. The western Pyrenean lherzolites also experienced rapid recrystallization; nevertheless, because they are of a different mineral facies, the data are not directly comparable to that from Ronda and Galicia. The harzburgite at Santa Elena as well as a xenolith from alkali basalt exemplify rapid cooling characterized by very weak re-equilibration. Recrystallization speed is related to emplacement speed in the present geological environment. The slow-rising Galicia margin peridotite was emplaced by thinning of the lithospheric subcontinental mantle near an incipient mid-oceanic ridge. The fast-rising peridotites from Ronda and the western Pyrenees were hot diapirs emplaced from the asthenosphere along transcurrent faults, possibly related to the opening of the Atlantic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probable in-situ manganese deposits larger than 1 cm in diameter buried in ODP/DSDP cores were selected for study after examining previous descriptions of the manganese deposits in site reports and the ODP data base. Most of the selected samples from 11 cores occur at or just above sedimentary hiatuses or in slowly deposited sediments and are overlain by rapidly deposited sediments of biogenic, terrigenous or volcanogenic origin. The changes in sedimentation recorded in the lithostratigraphic sections around these deposits are closely related to changes in tectonic evolution, deep water circulation or biological productivity at the sites. The similarity in composition and structure of the buried deposits to those of the modern manganese nodules and crusts with no evidence of post-depositional change suggest that buried manganese deposits may be used as indicators of past sedimentary conditions during which they formed. Their major components are hydrogenetic and earlydiagenetic manganese minerals as well as detrital minerals. The characteristics of these manganese deposits suggests that similar processes of deposition have taken place since the Paleogene or older.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed data obtained on chemistry of sedimentary rocks from the Mountainous Crimea and the Northwestern Caucasus that were dated at the Cenomanian/Turonian boundary and formed during Oceanic Anoxic Event 2 make it possible to calculate dissolved oxygen concentration in bottom waters of the sedimentation basin. Enrichment factors of trace elements in black shales are revised and an explanation is suggested for genesis of the rocks with regard for unusual climatic changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DSDP Leg 82 drilled nine sites to the southwest of the Azores Islands on the west flank of the Mid-Atlantic Ridge (MAR) in an attempt to determine the temporal and spatial evolution of the Azores "hot-spot" activity. The chemistry of the basalts recovered during Leg 82 is extremely varied: in Holes 558 and 561, both enriched (E-type: CeN/YbN = 1.5 to 2.7; Zr/Nb = 4.5 to 9.6) and depleted (or normal-N-type: CeN/YbN = 0.6 to 0.8; Zr/Nb > 20) mid-ocean ridge basalts (MORB) occur as intercalated lava flows. To the north of the Hayes Fracture Zone, there is little apparent systematic relationship between basalt chemistry and geographic position. However, to the south of the Hayes Fracture Zone, the chemical character of the basalts (N-type MORB) is more uniform. The coexistence of both E-type and N-type MORB in one hole may be explicable in terms of either complex melting/ fractionation processes during basalt genesis or chemically heterogeneous mantle sources. Significant variation in the ratios of strongly incompatible trace elements (e.g., La/Ta; Th/Ta) in the basalts of Holes 558 and 561 are not easily explicable by processes such as dynamic partial melting or open system crystal fractionation. Rather, the trace element data require that the basalts are ultimately derived from at least two chemically distinct mantle sources. The results from Leg 82 are equivocal in terms of the evolution of the Azores "hot spot," but would appear not to be compatible with a simple model of E-type MORB magmatism associated with upwelling mantle "blobs." Models that invoke a locally chemically heterogeneous mantle are best able to account for the small-scale variation in basalt chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very significant enhancements of the element iridium have been observed in association with the Cretaceous/ Tertiary boundary in marine sediments laid down 65 m.y. ago and subsequently uplifted above the ocean's surface. If our hypothesis for the origin of the iridium and the cause of the Cretaceous/Tertiary life extinctions (the asteroid-impact theory) (Alvarez et al., 1980) is correct, the Ir anomaly should be associated with the Cretaceous/ Tertiary boundary region wherever it is intact. The present work was undertaken to search for the Ir anomaly in a deep-sea-drilling core, in order to check this aspect of the asteroid-impact theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic reflection studies in the maar lake Laguna Potrok Aike (51°58? S, 70°23? W) revealed an erosional unconformity associated with a sub-aquatic lake-level terrace at a water depth of 30m. Radiocarbon-dated, multi-proxy sediment studies of a piston core from this location indicate that the sediment below this discontinuity has an age of 45kyr BP (Oxygen Isotope Stage 3), and was deposited during an interval of high lake level. In comparison to the Holocene section, geochemical indicators of this older part of the record either point towards a different sediment source or to a different transport mechanism for Oxygen Isotope Stage 3 sediments. Holocene sedimentation started again before 6790cal. yr BP, providing a sediment record of hydrological variability until the present. Geochemical and isotopic data indicate a fluctuating lake level until 5310cal. yr BP. During the late Holocene the lake level shows a receding tendency. Nevertheless, the lake level did not drop below the 30m terrace to create another unconformity. The geochemical characterization of volcanic ashes reveals evidence for previously unknown explosive activity of the Reclús and Mt. Burney volcanoes during Oxygen Isotope Stage 3.