900 resultados para Mid-Atlantic Ridge Rift Valley


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was aimed at reconstructing a sequence of events in the magmatic and metamorphic evolution of peridotites, gabbroids, and trondhjemites from internal oceanic complexes of the Ashadze and Logachev hydrothermal vent fields. Collections of plutonic rocks from Cruises 22 and 26 of R/V "Professor Logachev", Cruise 41 of R/V "Akademik Mstislav Keldysh", and from the Serpentine Russian-French expedition aboard R/V "Pourquoi pas?" were objects of this study. Data reported here suggest that the internal oceanic complexes of the Ashadze and Logachev fields formed via the same scenario in these two regions of the Mid-Atlantic Ridge. On the other hand, an analysis of petrological and geochemical characteristics of the rocks indicated that the internal oceanic complexes of the MAR axial zone between 12°58'N and 14°45'N show pronounced petrological and geochemical heterogeneity manifested in variations in degree of depletion of mantle residues and in Nd isotopic compositions of rocks from the gabbro-peridotite association. Trondhjemites from the Ashadze hydrothermal field can be considered as partial melting products of gabbroids under influence of hydrothermal fluids. It was supposed that presence of trondhjemites in internal oceanic complexes of MAR can be used as a marker for the highest temperature deep-rooted hydrothermal systems. Perhaps, the region of the MAR axial zone, in which petrologically and geochemically contrasting internal oceanic complexes are spatially superimposed, serves as an area for development of large hydrothermal clusters with considerable ore-forming potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The provided file archive contains genotype data from mid-Atlantic hydrothermal vent mussels (genus Bathymodiolus) at 18 SNP loci and the mitochondrial ND4 gene (BMAR_Baz_Bpu_genotypes.txt). The subfolders denote statistical programs used in the multilocus genotyping study and contain input files and scripts that were used in the respective analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure and composition of sub-surface bottom sediments from the southwest Barents Sea have been under study. The study has revealed heterogeneity of sediment structure resulted from temporal irregularity and variability of sedimentation processes. The study of the heavy minerals from 0.1-0.01 mm grain size fraction has shown prevalence of green hornblende, epidote, garnet, and ilmenite in all types of sediments; these minerals are the basis of terrigenous-mineralogical province. At the same time in different areas local terrigenous-mineralogical associations have been identified. Clay mineral composition of in the sediments was quite uniform: biotite, chlorite, hydromica, smectite. Despite this, a number of features indicating initial stages of clay mineral transformation has been identified. Differences in material composition and structure of the studied sediments are associated with rapid change in paleogeographic situation on the land - ice cover melting on the Kola Peninsula and subsequent Holocene climatic situation.