149 resultados para Mg-al Alloys
Resumo:
Multiproxy geologic records of d18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as 4 practical salinity units occur with a dominant period of 3-5 ky during the glacial/deglacial interval and 1.0-1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.
Resumo:
We present a species-specific Mg/Ca-calcification temperature calibration for Globorotalia inflata from a suite of 38 core top samples from the South Atlantic (from 8° to 49°S). G. inflata is a deep-dwelling planktonic foraminifer commonly occurring in subtropical to subpolar conditions, which qualifies it for reconstructions of the permanent thermocline. Apparent calcification depths and calcification temperatures were determined by comparing measured d18O with equilibrium d18O of calcite based on water column properties. Based on our core top samples, G. inflata apparent calcification depth is constant throughout the South Atlantic mid-latitudes with a depth of 350-400 m within the permanent thermocline. The resulting Mg/Ca-calcification temperature calibration is Mg/Ca = 0.72 +/-0.045/0.042 exp (0.076 +0.006 calcification 2 temperature) (r2 = 0.81) and covers the temperature range 3.1-16.5°C. We applied our Mg/Ca calibration to gravity core PS2495-3 from the Mid-Atlantic Ridge at ca. 41°S to test its validity by reconstructing a low-resolution record covering the last two glacial-interglacial cycles. Our paleotemperature record reveals large changes in temperature for Terminations I and II, when permanent thermocline temperature increased by as much as 8°C. The G. inflata paleotemperature record suggests that oceanic fronts repeatedly migrated over the location of site PS2495-3 during the last 160 kyr. This study shows the potential of G. inflata Mg/Ca to reconstruct paleotemperatures in the permanent thermocline.
Resumo:
A record of deep-sea calcite saturation (D[CO3**-2]), derived from X-ray computed tomography-based foraminifer dissolution index, XDX, was constructed for the past 150 ka for a core from the deep (4157 m) tropical western Indian Ocean. G. sacculifer and N. dutertrei recorded a similar dissolution history, consistent with the process of calcite compensation. Peaks in calcite saturation (~15 µmol/kg higher than the present-day value) occurred during deglaciations and early in MIS 3. Dissolution maxima coincided with transitions to colder stages. The mass record of G. sacculifer better indicated preservation than did that of N. dutertrei or G. ruber. Dissolution-corrected Mg/Ca-derived SST records, like other SST records from marginal Indian Ocean sites, showed coolest temperatures of the last 150 ka in early MIS 3, when mixed layer temperatures were ~4°C lower than present SST. Temperatures recorded by N. dutertrei showed the thermocline to be ~4°C colder in MIS 3 compared to the Holocene (8 ka B.P.).
Resumo:
Laboratory culture experiments were conducted to determine effects of seawater carbonate ion concentration ([CO32-]), and thereby calcite saturation state, on Mg and Sr incorporation into calcite of two species of shallow-water benthic foraminifera: Ammonia tepida and Heterostegina depressa. Impact on Mg and Sr incorporation by increased seawater [CO32-] and thereby higher calcite saturation state, is absent in either species. Comparison to results from a similar culturing experiment, in which calcite saturation state was varied as a function of [Ca2+], reveals that saturation state affects incorporation of Mg and Sr through calcium- rather than carbonate availability. The similarity in response by both species is surprising since the average Mg/Ca ratio is ~ 70 times higher in H. depressa than in A. tepida. Furthermore, these results suggest that the ions involved in biomineralization (i.e. Ca2+ and DIC) are processed by separate cellular transport mechanisms. The similar response of Mg and Sr incorporation in this study suggests that only differences in the Ca2+ transport mechanism affect divalent cation partitioning.
Resumo:
The delta18O values of planktonic foraminifera increased in the Caribbean by about 0.5? relative to the equatorial East Pacific values between 4.6 and 4.2 Ma as a consequence of the closure of the Central American Gateway (CAG). This increase in delta18O can be interpreted either as an increase in Caribbean sea surface (mixed layer) salinity (SSS) or as a decrease in sea surface temperatures (SST). This problem represents an ideal situation to apply the recently developed paleotemperature proxy delta44/40Ca together with Mg/Ca and d18O on the planktic foraminifer Globigerinoides sacculifer from ODP Site 999. Although differences in absolute temperature calibration of delta44/40Ca and Mg/Ca exist, the general pattern is similar indicating a SST decrease of about 2-3 8C between 4.4 and 4.3 Ma followed by an increase in the same order of magnitude between 4.3 and 4.0 Ma. Correcting the delta18O record for this temperature change and assuming that changes in global ice volume are negligible, the salinity-induced planktonic delta18O signal decreased by about 0.4? between 4.4 and 4.3 Ma and increased by about 0.9? between 4.3 and 4.0 Ma in the Caribbean. The observed temperature and salinity trends are interpreted to reflect the restricted exchange of surface water between the Caribbean and the Pacific in response to the shoaling of the Panamanian Seaway, possibly accompanied by a southward shift of the Intertropical Convergence Zone (ITCZ) between 4.4 and 4.3 Ma. Differences in Mg/Ca- and delta44/40Ca-derived temperatures can be reconciled by corrections for secular variations of the marine Mg/Ca[sw] and delta44/40Ca, a salinity effect on the Mg/Ca ratio and a constant temperature offset of ~2.5 °C between both SST proxy calibrations.
Resumo:
We report d18O and minor element (Mg/Ca, Sr/Ca) data acquired by high-resolution, in situ secondary ion mass spectrometry (SIMS) from planktic foraminiferal shells and 100-500 µm sized diagenetic crystallites recovered from a deep-sea record (ODP Site 865) of the Paleocene-Eocene thermal maximum (PETM). The d18O of crystallites (~1.2 per mil Pee Dee Belemnite (PDB)) is ~4.8 per mil higher than that of planktic foraminiferal calcite (-3.6 per mil PDB), while crystallite Mg/Ca and Sr/Ca ratios are slightly higher and substantially lower than in planktic foraminiferal calcite, respectively. The focused stratigraphic distribution of the crystallites signals an association with PETM conditions; hence, we attribute their formation to early diagenesis initially sourced by seafloor dissolution (burndown) ensued by reprecipitation at higher carbonate saturation. The Mg/Ca ratios of the crystallites are an order of magnitude lower than those predicted by inorganic precipitation experiments, which may reflect a degree of inheritance from "donor" phases of biogenic calcite that underwent solution in the sediment column. In addition, SIMS d18O and electron microprobe Mg/Ca analyses that were taken within a planktic foraminiferal shell yield parallel increases along traverses that coincide with muricae blades on the chamber wall. The parallel d18O and Mg/Ca increases indicate a diagenetic origin for the blades, but their d18O value (-0.5 per mil PDB) is lower than that of crystallites suggesting that these two phases of diagenetic carbonate formed at different times. Finally, we posit that elevated levels of early diagenesis acted in concert with sediment mixing and carbonate dissolution to attenuate the d18O decrease signaling PETM warming in "whole-shell" records published for Site 865.
Resumo:
Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37-41 from approximately 1235 to 1320 ka) during the "41 ka world" at Integrated Ocean Drilling Program Site U1385 (the "Shackleton Site") on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic d18O exceeded 3.2 per mil. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles.
Resumo:
The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in an mean state with a reduced zonal sea surface temperature gradient, or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.
Resumo:
The Sr/Ca of aragonitic coral skeletons is a commonly used palaeothermometer. However skeletal Sr/Ca is typically dominated by weekly-monthly oscillations which do not reflect temperature or seawater composition and the origins of which are currently unknown. To test the impact of transcellular Ca2+ transport processes on skeletal Sr/Ca, colonies of the branching coral, Pocillopora damicornis, were cultured in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil hydrochloride). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton deposited in the presence of the inhibitors was identified (by 42Ca spike) and analysed for Sr/Ca and Mg/Ca by secondary ion mass spectrometry. The Sr/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from that of the solvent (dimethyl sulfoxide) control, although the coral calcification rate was reduced by up to 66% and 73% in the ruthenium red and verapamil treatments, respectively. The typical precision (95% confidence limits) of mean Sr/Ca determinations within any treatment was <±1% and differences in skeletal Sr/Ca between treatments were correspondingly small. Either Ca-ATPase and Ca channels transport Sr2+ and Ca2+ in virtually the same ratio in which they are present in seawater or transcellular processes contribute little Ca2+ to the skeleton and most Ca is derived from seawater transported directly to the calcification site. Variations in the activities of Ca-ATPase and Ca-channels are not responsible for the weekly-monthly Sr/Ca oscillations observed in skeletal chronologies, assuming that the specificities of Ca transcellular transport processes are similar between coral genera.
Resumo:
Variations in sea surface temperature (SST), d18O of sea water (?18Ow), and salinity were reconstructed for the past 68 ka using a sediment core (AAS9/21) from the eastern Arabian Sea (EAS) in order to understand the changes in evaporation and precipitation associated with the monsoon system. The Mg/Ca-derived SST record varies by ~4°C; it shows that marine isotope stage (MIS) 4 was warmer than MIS 3, that the Last Glacial Maximum was 4°C cooler than the present, and that there was a 2°C increase within the Holocene. MIS 4 records higher d18Ow and salinity values than MIS 2, suggesting variable flow of low-salinity Bay of Bengal flow into the EAS during glacial periods. The transition from MIS 4 to MIS 3 was marked with a conspicuous shift from higher to lower d18Ow values, which reflects a decrease in the evaporation-precipitation budget in the EAS, perhaps due to the strengthening of southwest monsoon. Monsoon reconstructions based on d18Ow reveal that monsoon-driven precipitation was higher during MIS 3 and MIS 1 and was lower during MIS 2 and MIS 4. This is consistent with earlier monsoon reconstructions based on upwelling indices from the western Arabian Sea. However, the amplitude of monsoon fluctuations derived through upwelling indices and d18Ow varies significantly, which may indicate spatial variability of monsoon rainfall.
Resumo:
The advection of relatively fresh Java Sea water through the Sunda Strait is presently responsible for the low-salinity "tongue" in the eastern tropical Indian Ocean with salinities as low as 32 per mil. The evolution of the hydrologic conditions in the eastern tropical Indian Ocean since the last glacial period, when the Sunda shelf was exposed and any advection via the Sunda Strait was cutoff, and the degree to which these conditions were affected by the Sunda Strait opening are not known. Here we have analyzed two sediment cores (GeoB 10042-1 and GeoB 10043-3) collected from the eastern tropical Indian Ocean off the Sunda Strait that cover the past ~40,000?years. We investigate the magnitude of terrigenous supply, sea surface temperature (SST), and seawater d18O (d18Osw) changes related to the sea level-driven opening of the Sunda Strait. Our new spliced records off the Sunda Strait show that during the last glacial, average SST was cooler and d18Osw was higher than elsewhere in the eastern tropical Indian Ocean. Seawater d18O decreased ~0.5 per mil after the opening of the Sunda Strait at ~10 kyr B.P. accompanied by an SST increase of 1.7°C. We suggest that fresher sea surface conditions have persisted ever since due to a continuous transport of low-salinity Java Sea water into the eastern tropical Indian Ocean via the Sunda Strait that additionally increased marine productivity through the concomitant increase in terrigenous supply.