227 resultados para Loess Plateau
Resumo:
The Cretaceous ostracodes species recognized on Leg 122 represent elements of South Gondwanan faunistic province. In Lower and middle Cretaceous cores, ostracodes species present were originally described from South Africa and in cores from Deep Sea Drilling Project Leg 36 (Falkland Plateau): Arculicythere tumida, Bythocypris? cf. nodosa, 'Bythocypris' cf. strogylae, Collosaboris? stanleyensis, Cytherella bensoni, Majungaella nematis, Robsoniella cf. falklandensis and Pirileberis aff. mkuzensis. In Upper Cretaceous levels, the Australian species Apateloschizocythere geniculata, Bairdia austracretacea, Cytherella cf. atypica, Cytherella cf. jonesi, Cytherelloidea cf. carnarvonensis, Cytherelloidea cf. colemani, Karsteneis aspericava, and Trachyleberis anteplana were found.
Resumo:
An essentially complete Paleogene record was recovered on the Central and Southern Kerguelen plateaus (55°-59°S) in a calcareous biofacies. Recovery deteriorated in the middle Eocene and down to the upper Paleocene because of the presence of interbedded cherts and chalks. The stratigraphic distribution of about 70 taxa of planktonic foraminifers recovered at Sites 747-749 is reported in this paper. Faunas exhibited fairly high diversity (approximately 20-25 species) in the early Eocene, followed by a gradual reduction in diversity in the middle Eocene. A brief incursion of tropical keeled morozovellids occurred near the Paleocene/Eocene boundary, similar to that recorded on the Maud Rise (ODP Sites 689 and 690). The high-latitude Paleogene zonal scheme developed for ODP Leg 113 sites has been adopted (with minor modifications) for the lower Eocene-Oligocene part of the Kerguelen Plateau record. A representative Oligocene (polarity chronozones 7-13) and late Eocene-late middle Eocene (questionably polarity chronozones 16-18) magnetostratigraphic record has allowed the calibration of several biostratigraphic datum levels to the standard Global Polarity Time Scale (GPTS) and established their essential synchrony between low and high latitudes.
Resumo:
Sedimentary cycles are observed in the nearly complete Lower Cretaceous to Eocene pelagic carbonates at Site 762 on the Exmouth Plateau off northwest Australia. The high-frequency cycles of variable clay and foraminifers in nannofossil chalk appear as color cycles repeating on a scale of centimeters to meters in thickness. Measured cycle thickness indicate that the dominant cycles appear to be related to the precession and obliquity periods. To evaluate the high-frequency variance observed on the gamma-ray curve, spectral analysis of the log was performed on two intervals: 260 to 365 mbsf in the Cenozoic, and 555 to 685 mbsf in the Mesozoic. Average Cenozoic sedimentation rates of 10.5 m/m.y. are high enough to show that variance is present in the full suite of eccentricity bands (413-123-95 k.y.). Spectral analysis of the Mesozoic section failed to produce dominant peaks that could be correlated to predicted orbital periods. The bioturbation observed in the cores in this interval may be responsible for diluting the signal and producing high-frequency noise, which is manifested in the spectra as low, broad amplitude peaks. Orbital forcing may be affecting sedimentation on the Exmouth Plateau by influencing cycles of increased carbonate production or dissolution. Alternatively, clay abundance cycles may be related to eolian deposition during cycles of increased aridity in western Australia. Four low-frequency events were also identified at Site 762 from the core and log data. The duration of these events is approximately 13 m.y., and the conformable boundaries of these sedimentary cycles correlate with observed nondepositional surfaces in other wells in western Australia. The causal mechanism for the onset of these events may be eustatic, but alternatively may be regional tectonism with associated circulation pattern changes.
Resumo:
The early to mid-Holocene thermal optimum is a well-known feature in a wide variety of paleoclimate archives from the Northern Hemisphere. Reconstructed summer temperature anomalies from across northern Europe show a clear maximum around 6000 years before present (6 ka). For the marine realm, Holocene trends in sea-surface temperature reconstructions for the North Atlantic and Norwegian Sea do not exhibit a consistent pattern of early to mid- Holocene warmth. Sea-surface temperature records based on alkenones and diatoms generally show the existence of a warm early to mid-Holocene optimum. In contrast, several foraminifer and radiolarian based temperature records from the North Atlantic and Norwegian Sea show a cool mid- Holocene anomaly and a trend towards warmer temperatures in the late Holocene. In this paper, we revisit the foraminifer record from the Vøring Plateau in the Norwegian Sea. We also compare this record with published foraminifer based temperature reconstructions from the North Atlantic and with modelled (CCSM3) upper ocean temperatures. Model results indicate that while the seasonal summer warming of the seasurface was stronger during the mid-Holocene, sub-surface depths experienced a cooling. This hydrographic setting can explain the discrepancies between the Holocene trends exhibited by phytoplankton and zooplankton based temperature proxy records.
Resumo:
Benthic foraminifers were studied quantitatively in 120 lower Miocene through upper Pleistocene samples from Ocean Drilling Program Site 747 (Central Kerguelen Plateau) and Sites 748 and 751 (Southern Kerguelen Plateau). These sites are situated on an 450-km-long, north-south transect between 54°49'S and 58°26'S at present water depths between 1696 and 1288 m. Principal component analysis on the census data of the most abundant 92 taxa helped to identify 8 benthic foraminifer assemblages. These benthic foraminifer assemblages were compared with Holocene faunas from southern high latitudes to reconstruct paleoenvironmental conditions. Middle lower Miocene sediments are characterized by a Uvigerina hispidocostata assemblage, indicating high paleoproductivity and/or not well-ventilated bottom water. From late early to late middle Miocene time, the Southern Kerguelen Plateau was bathed by a young, well-oxygenated, and carbonate-aggressive water mass, as indicated by a Nuttallides umbonifer-dominated benthic foraminifer assemblage. During late middle Miocene time, an Astrononion pusillum assemblage took over for only about 1 m.y., probably indicating the first injection of an aged water mass, similar to the North Atlantic Deep Water (NADW), into a developing circumpolar current system. Around the middle to late Miocene boundary, the fauna again became dominated by N. umbonifer. After the last appearance of N. umbonifer, reestablishment of the A. pusillum assemblage from the early late through at least the late late Miocene, indicated the established influence of a NADW-like water mass. The latest Miocene through middle late Pliocene benthic foraminifer assemblage was characterized by Epistominella exigua and strong carbonate dissolution, indicating very high biosiliceous production, and this in turn may indicate the formation and paleoposition of an Antarctic Polar Frontal Zone. From the late late Pliocene, a Trifarina angulosa assemblage (indicative today of sandy substrate and vigorous bottom currents) strongly dominated the fauna up to the late Pleistocene, when Bulimina aculeata (indicative today of calm sedimentation with high organic matter fluxes) became an important and partly dominating constituent of the fauna. This is interpreted as the faunal response to the decreased winnowing force (bottom current velocities) of the Antarctic Circumpolar Current during periods of global climatic amelioration and raised sea level.
Resumo:
Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.