299 resultados para Leo VI, Emperor of the East, 866-912.
Resumo:
The benthic stable isotope record from ODP Site 761 (Wombat Plateau, NW Australia, 2179.3 m water depth) documents complete recovery of the middle Miocene delta13C excursion corresponding to the climatic optimum and subsequent expansion of the East Antarctic Ice Sheet. The six main delta13C maxima of the "Monterey Excursion" between 16.4 and 13.6 Ma and the characteristic stepped increase in delta18O between 14.5 and 13.9 Ma are clearly identified. The sedimentary record of the shallower ODP Sites 1126 and 1134 [Great Australian Bight (GAB), SWAustralia, 783.8 and 701 m water depth, respectively] is truncated by several unconformities. However, a composite benthic stable isotope curve for these sites provides a first middle Miocene bathyal record for southwest Australia. The delta18O and delta13C curves for Sites 1126 and 1134 indicate a cooler, better-ventilated water mass at ~700 m water depth in the Great Australian Bight since approximately 16 Ma. This cooler and younger water mass probably originated from a close southern source. Cooling of the bottom water at ~16 Ma started much earlier than at other sites of equivalent paleodepths in the central and western parts of the Indian Ocean. At Site 761, the delta18O curve shows an excellent match with the global sea level curve between ~11.5 and 15.1 Ma, and thus closely reflects changes in global ice volume. Prior to 15.1 Ma, the mismatch between the delta18O curve and the sea level curve indicates that delta18O fluctuations are mainly due to changes in bottom water temperature.
Resumo:
Tagged phosphorus was used to measure principal indices of mineral phosphorus variations in the euphotic zone of the East Pacific, i.e. total rate of uptake of phosphate phosphorus by microplankton (A_t), fraction consumed by phytoplankton (A_p/A_t), and turnover time (T). A_t reached its greatest values (150-280 ng/l/hour) in the upwelling zone of the Peru traverse, where development of phytoplankton was induced by upwelling. In other areas of this traverse values were 40-80 ng/l/hour in surface layers. In less productive waters on two other profiles (off Central America and California), values were lower, between 20 and 40 ng/l. On the vertical profile maxima of A_t were found at the upper boundary of the thermocline. Turnover time of PO4 phosphorus (T) in zones of phytoplankton abundance was very short, between 1.5 and 4 days. At most other stations it was 10-40 days, increasing to 100-200 days or longer at the lower boundary of the euphotic zone. In areas of phytoplankton abundance it accounted for 60-80% of total uptake of PO4 phosphorus. But in zones of elevated bacterial abundance, A_p/A_t fell to 20-40%. Data indicating lack of correlation between PO4 phosphorus and productivity are presented. It is emphasized that the above measures of PO4 phosphorus dynamics can be used for obtaining measures of functional condition and successional phase of marine plankton communities.
Resumo:
New surveys were completed and data from the field sheets were kindly furnished by the U. S. Coast and Geodetic Survey to the Woods Hole Oceanographic Institution for use in dredging and coring operations. This field work, first reported in 1936, was continued from time to time until 1941 as new soundings became available. Rock dredging and coring has been carried out in every major canyon on the slope from Corsair Canyon at the tip of Georges Bank to Norfolk Canyon off the entrance to the Chesapeake. Numerous cores have also been taken from the areas in between; and while the whole slope from Georges to the Chesapeake has not been covered, it is believed that no significant areas have been missed. In the following report the tows and cores will be described by areas from Georges Bank southwards, as the same region was revisited in successive years. The various samples, however, will be referred to by number followed by the year in which they were taken. The material is in storage in the Woods Hole Oceanographic Institution and in the Museum of Comparative Zoology at Harvard University.
Resumo:
DSDP 160 forms part of a series of sites in the eastern equatorial Pacific on the west flank of the East Pacific Rise. Earlier legs of the Deep Sea Drilling Project, in particular Legs 5 and 9, have reported sediments rich in oxides of iron and perhaps other transition metals just above basement in the eastern Pacific. These occurrences roughly define a broad zone on the west flank of the rise. Site DSDP 160 lies on this trend and were selected by the Pacific Site Selection Panel to test the extent of such deposits.
Resumo:
DSDP 161 is located on the lower west flank of the East Pacific Rise about midway between the Clipperton and Clarion fracture zones which define the boundaries of a large structural block in the eastern Pacific. The site is about 4,000 km west of the present crest of the Rise. It is located near the northern edge of a zone of thick Cenozoic sediments which marks the general location of the equatorial zone of high biological productivity.
Resumo:
DSDP 162 is located due north of DSDP 161 on the lower west flank of the East Pacific Rise about 3900 km west of the crest. It is in the Clarion-Clipperton block, about 80 km south of the Clarion Fracture Zone. The site lies at the extreme northern edge of the zone of thick sediments that parallels the equator in the Pacific and marks the region of high biological productivity.
Resumo:
DSDP 159 is one of a series of sites in the eastern equatorial Pacific on the west flank of the East Pacific Rise. It was selected by the Pacific Site Selection Panel on the premise that if hydrothermal processes on the crest of the East Pacific Rise supply the transition metals, a broad zone of such deposits should be present immediately above basement over the entire flank of the Rise.