731 resultados para Larsen, Aksen


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program Legs 152 and 163, we recovered core from the offshore East Greenland volcanic province. The basaltic core recovered included a set of structural elements reflecting the history of extrusion, cooling, postdeposition alteration, and minor tectonism. Brittle features in the basaltic core include faults and several generations of veins. Several minicore samples from the lower sections of core from Hole 917A were taken for paleomagnetic analysis, primarily to test whether there were any significant postdepositional tectonic rotations or whether the core could be reoriented using paleomagnetic techniques. The characteristic magnetization direction was used to estimate the in situ orientation of measured structural features within the core. Although significant uncertainty is associated with the analysis, the corrected attitudes of veins in basalt at Site 917 dip moderately west, with a smaller, conjugate group of veins dipping moderately east-southeast, parallel to other seaward-dipping faults in the area, which were interpreted from seismic lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age dating of Paleogene diamictites from ODP Site 739 in Prydz Bay with marine microfossils (diatoms and calcareous nannofossils) suggests the build-up of a major East Antarctic ice shield in latest Eocene to earliest Oligocene time, about 35-38 m.y. ago. Strontium isotopic analyses of small mollusk remains found within these diamictites, however, yield younger ages ranging from 29 to 23 Ma (i.e., latest early Oligocene to earliest Miocene). These age discrepancies could be caused by repeated glacial reworking of microfossils, macrofossils, and sediment clasts through the late Oligocene or, alternatively, by ion exchange in the still aragonitic mollusk shells.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic matter in Miocene glacial sediments in Hole 739C on the Antarctic Shelf represents erosional recycled continental material. Various indications of maturity in bulk organic matter, kerogens, and extracts imply that an exposed section of mature organic carbon-rich material was present during the Miocene. Based on biomarker, n-alkane, and kerogen analysis, a massive diamictite of early Eocene/Oligocene age at Hole 739C contains immature organic matter. Visual and pyrolysis analyses of the kerogens suggest a predominance of terrestrial organic matter in all samples from Hole 739C. A reversal of thermal maturities, i.e., more-mature overlying less-mature sections, may be related to redeposition generated from glacial erosion. Siliciclastic fluviatile sediments of Lower Cretaceous age from Hole 741A were analyzed. The organic matter from this hole contains immature aliphatic and aromatic biomarkers as well as a suite of odd carbon number-dominated nalkanes. Visual examination and pyrolysis analysis of the kerogen suggests that predominantly immature terrestrial organic matter is present at Hole 741A. The similarities between Hole 739C Unit V and Hole 741A suggest that the source of the organic matter in the glacial sediments in Unit V at Hole 739C could be Cretaceous in age and similar to sediments sampled at Hole 741A in Prydz Bay.