337 resultados para Kilometric abundance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal patterns in the partitioning of phytoplankton carbon during receding sea ice conditions in the eastern Bering Sea water column are presented using rates of 14C net primary productivity (NPP), phototrophic plankton carbon content, and POC export fluxes from shelf and slope waters in the spring (March 30-May 6) and summer (July 3-30) of 2008. At ice-covered and marginal ice zone (MIZ) stations on the inner and middle shelf in spring, NPP averaged 76 ± 93 mmol C/m**2/d, and in ice-free waters on the outer shelf NPP averaged 102 ± 137 mmol C/m**2/d. In summer, rates of NPP were more uniform across the entire shelf and averaged 43 ± 23 mmol C/m**2/d over the entire shelf. A concomitant shift was observed in the phototrophic pico-, nano-, and microplankton community in the chlorophyll maximum, from a diatom dominated system (80 ± 12% autotrophic C) in ice covered and MIZ waters in spring, to a microflagellate dominated system (71 ± 31% autotrophic C) in summer. Sediment trap POC fluxes near the 1% PAR depth in ice-free slope waters increased by 70% from spring to summer, from 10 ± 7 mmol C/m**2/d to 17 ± 5 mmol C/m**2/d, respectively. Over the shelf, under-ice trap fluxes at 20 m were higher, averaging 43 ± 17 mmol C/m**2/d POC export over the shelf and slope estimated from 234Th deficits averaged 11 ± 5 mmol C/m**2/d in spring and 10 ± 2 mmol C/m**2/d in summer. Average e-ratios calculated on a station-by-station basis decreased by ~ 30% from spring to summer, from 0.46 ± 0.48 in ice-covered and MIZ waters, to 0.33 ± 0.26 in summer, though the high uncertainty prevents a statistical differentiation of these data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, -2.3°C) and Anchorage Island (67°S, -3.8°C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island. The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 +/- 2 x 10**3 ind./m**2) to Signy (3.3 +/- 8.0 x 10**4 ind./m**2) and Anchorage Island (3.1 +/- 0.82 x 10**5 ind./m**2). The abundance of Acari did not show a latitudinal trend. Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata. Overall, our data suggest that the consequences of an experimental temperature increase of 1-2°C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the Godthabsfjord (64°N, 51°W) SW Greenland, through a combination of fieldwork and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily ration of 1% body C/d. Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 µm, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory behaviour of krill will concentrate and elevate the grazing in specific areas of the euphotic zone.

Relevância:

20.00% 20.00%

Publicador: